Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Grb2 binding domain of mSos1 is not required for downstream signal transduction

Abstract

Cellular Ras proteins are activated primarily by specific guanine–nucleotide releasing factors such as the Son of Sevenless (Sos) proteins. This activation event is thought to occur in response to plasma membrane localization of a complex containing Sos and a small adapter protein Grb2. We have isolated a dominant mutant allele of mSosI which transforms Rat1 cells, yet is no longer able to bind Grb2. Biochemical experiments reveal that the subcellular distribution of this truncated Sos protein is not altered with respect to the wild type Sos protein. These data argue against a role for Grb2 in the direct recruitment of Sos proteins to the plasma membrane and suggest that Grb2 may Function to overcome negative regulation of Sos by its C terminus.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Egan, S.E. & Weinberg, R.A. Signal achievement & the bigger picture. Nature 365, 781–783 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Simon, M.A., Dodson, G.S. & Rubin, G.M. An SH3-SH2-SH3 protein is required for p21 Ras1 activation and binds to sevenless and Sos proteins in vitro. Cell 73, 169–177 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Olivier, J.P. et al. A Drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos. Cell 73, 179–191 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Egan, S.E. et al. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363, 45–51 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Rozakis-Adcock, M., Fernley, R., Wade, J., Pawson, T., & Bowtell, D. TheSH2 and SH3 domains of mammalian Grb2 couple the EOF receptor to the Ras activator mSosI. Nature 363, 83–85 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Li, N. et al. Guanine nucleotide releasing factor hSosI binds to Grb2 and links receptor tyrosine kinases to Ras signalling. Nature 363, 85–88 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Buday, L. & Downward, J. EGF regulates p21 ras through the formation of a complex of receptor, Grb2 adapter protein and Sos nucleotide exchange factor. Cell 73, 611–620 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Chardin, P. et al. Human Sos1: a guanine nucleotide exchange factor for Ras that binds to Grb2. Science 260, 1338–1343 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Clark, S.G., Stern, M.J. & Horvitz, H.R.C. H.R. C. elegans cell signaling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature 356, 340–344 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Horvitz, H.R. & Sternberg, P.W. Multiple intercellular signalling systems control the development of the Caenorhabditis elegans vulva. Nature 351, 535–541 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Lowenstein, E.J. et al. The SH2 and SH3 domain containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 70, 431–442 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Matuoka, K., Shibata, M., Yamakawa, A. & Takenawa, T. Cloning of ASH, a ubiquitous protein composed of one Src homology region (SH) 2 and two SH3 domains, from human and rat cDNA libraries. Proc. natn. Acad. Sci. U.S.A. 89, 9015–9019 (1992).

    Article  CAS  Google Scholar 

  13. Marengere, L.E.M. et al. SH2 domain specificity and activity modified by a single residue. Nature 369, 502–505 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Rogge, R.D., Karlovich, C.A. & Banerjee, U. Genetic dissection of a neurodevelopmental pathway: Son of Sevenless functions downstream of the sevenless and EGF receptor tyrosine kinases. Cell 64, 39–48 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Simon, M.A., Bowtell, D.D., Bowtell, D.D.L., Dodson, G.S., Laverty, T.R. & Rubin, G.M. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67, 701–716 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Bonfini, L., Karlovich, C.A., Dasgupta, C. & Banerjee, U. The son of sevenless gene product: a putative activator of ras. Science 255, 603–606 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Bowtell, D., Fu, P., Simon, M. & Senior, P. Identification of murine homologues of the Drosophila son of sevenless gene: potential activators of ras. Proc. natn. Acad. Sci. U.S.A. 89, 6511–6515 (1992).

    Article  CAS  Google Scholar 

  18. Porfiri, E., Evans, T., Chardin, P. & Hancock, J.F. Prenylation of Ras proteins is required for efficient hSosI -promoted guanine nucleotide exchange. J. biol. Chem. 269, 22672–22677 (1994).

    CAS  PubMed  Google Scholar 

  19. Powers, S. Genetic analysis of ras homologues in yeasts. Semin. Cancer. Biol. 3, 209–218 (1992).

    CAS  PubMed  Google Scholar 

  20. Lowy, D.R. & Willumsen, B.M. Function and regulation of RAS. Ann. Rev. Biochem. 62, 851–891 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. McCormick, F. Signal transduction: how receptors turn Ras on. Nature 363, 15–16 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Pawson, T. & Schlessinger, J. SH2 and SH3 domains. Curr. Biol. 3, 434–442 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Lai, C.-C., Boguski, M., Broek, D. & Powers, S. Influence of guanine nucleotides on complex formation between Ras and CDC25 proteins. Molec. cell. Biol. 13, 1345–1352 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mosteller, R.D., Han, J. & Broek, D. Identification of residues of the H-Ras protein critical for functional interaction with guanine nucleotide exchange factors. Molec. cell. Biol. 14, 1104–1112 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morgenstern, J.P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucl. Acids Res. 18, 3587–3596 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Broek, D. et al. The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48, 789–99 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Yoshimura, A., Longmore, G. & Lodish, H.F. Point mutation in the exoplasmic domain of the erythropoietin receptor resulting in hormone-independent activation and tumorigenicity. Nature 348, 647–649 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Danos, O. & Mulligan, R.C. Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc. natn. Acad. Sci. U.S.A. 85, 6460–6464 (1988).

    Article  CAS  Google Scholar 

  29. Dranoff, G. et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. natn. Acad. Sci. U.S.A. 90, 3539–3543 (1993).

    Article  CAS  Google Scholar 

  30. Aronheim, A. et al. Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell 78, 949–961 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Cherniack, A.D., Klarlund, J.K. & Czech, M.P. Phosphorylation of the Ras nucleotide exchange factor Son of Sevenless by mitogen activated protein kinase. J. biol. Chem. 269, 4717–4720 (1994).

    CAS  PubMed  Google Scholar 

  32. Burgering, B.M.T., Pronk, G.J., van Weeren, P.C., Chardin, P. & Bos, J.L. cAMP antagonizes p21 ras-directed activation of extracellular signal-regulated kinase 2 and phosphorylation of mSos nucleotide exchange factor. EMBO J. 12, 4211–4220 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Musacchio, A., Gibson, T., Rice, P., Thompson, J. & Saraste, M. The PH domain: a common piece in the structural patchwork of signalling proteins. Trends Biochem. Sci. 18, 343–348 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Welham, M.J., Duronio, V., Leslie, K.B., Bowtell, D. & Schrader, W. Multiple hemopoietins, with the exception of lnterleukin-4, induce modification of Shc and mSosI, but not their translation. J. biol. Chem. 269, 21165–21176 (1994).

    CAS  PubMed  Google Scholar 

  35. Pronk, G.J. et al. Involvement of Shc in insulin- and epidermal growth factor-induced activation of p21 ras. Molec. cell. Biol. 14, 1575–1581 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Basu, T., Warne, P.H. & Downward, J. Role of Shc in the activation of Ras in response to epidermal growth factor and nerve growth factor. Oncogene 9, 3483–3491 (1994).

    CAS  PubMed  Google Scholar 

  37. Di Guglielmo, G.M., Baass, P.C., Ou, W.-J., Posner, B.I. & Bergerson, J.J.M. Compartmentalization of She, Grt>2 and mSos, and hyperphosphorylation of Raf-1 by EGF but not insulin in liver parenchyma. EMBO J. 13, 4269–4277 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Quilliam, L.A. et al. Membrane-targeting potentiates guanine nucleotide exchange factor CDC25 and Sos1 activation of Ras transforming activity. Proc. natn. Acad. Sci. U.S.A. 91, 8512–8516 (1994).

    Article  CAS  Google Scholar 

  39. Templeton, D.J., Park, S.H., Lanier, L. & Weinberg, R.A. Nonfunctional mutants of the retinoblastorna protein are characterized by defects in phosphorylation, viral oncoprotein association, and nuclear tethering. Proc. natn. Acad. Sci. U.S.A. 88, 3033–3037 (1991).

    Article  CAS  Google Scholar 

  40. Shoemaker, C., Hoffmann, J., Goff, S.P. & Baltimore, D. Intramolecular integration within moloney murine leukemia virus DNA. J. Virol. 40, 164–172 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sambrook, J., Fritsch, E.F. & Maniatis, T., Cloning: A Laboratory manual. 2nd ed (Cold Spring Harbor Laboratory, New York,1989).

    Google Scholar 

  42. Markowitz, D., Goff, S. & Bank, A. A safe packaging line for gene transfer: separating viral genes on two different plasmids. J. Virol. 62, 1120–1124 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang, D.C.S., Marshall, C.J. & Hancock, J.F., Membrane-targeted ras GTPase-activating protein is a potent suppressor of p21 Ras function. Molec. cell. Biol. 13, 2420–2431 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grussenmeyer, T., Scheidtmann, K.H., Hutchinson, M.A., Eckhart, W. & Gernot, W. Complexes of polyoma virus medium T antigen and cellular proteins. Proc. natn. Acad. Sci. U.S.A. 82, 7952–7954 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Fisher, E., Jia, Q. et al. The Grb2 binding domain of mSos1 is not required for downstream signal transduction. Nat Genet 10, 294–300 (1995). https://doi.org/10.1038/ng0795-294

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0795-294

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing