Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adenosine–deaminase–deficient mice die perinatally and exhibit liver–cell degeneration, atelectasis and small intestinal cell death

Abstract

We report the generation and characterization of mice lacking adenosine deaminase (ADA). In humans, absence of ADA causes severe combined immunodeficiency. In contrast, ADA–deficient mice die perinatally with marked liver–cell degeneration, but lack abnormalities in the thymus. The ADA substrates, adenosine and deoxyadenosine, are increased in ADA–deficient mice. Adenine deoxyribonucleotides are only modestly elevated, whereas S–adenosylhomocysteine hydrolase activity is reduced more than 85%. Consequently, the ratio of S–adenosylhomocysteine (AdoMet) to S–adenosyl homocysteine (AdoHcy) is reduced threefold in liver. We conclude that ADA plays a more critical role in murine than human fetal development. The murine liver pathology may be due to AdoHcy–mediated inhibition of AdoMet–dependent transmethylation reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chinsky, J.M. et al. Developmental expression of adenosine deaminase in the upper alimentary tract of mice. Differentiation 42, 172–183 (1990).

    Article  CAS  Google Scholar 

  2. Ramamurthy, V. et al. Prenatal and postnatal expression of adenosine deaminase in mice. in Molecular and cellular mechanisms of human hypersensitivity and autoimmunity. (ed. Goetzl, E.J.) 125–131 (Liss, New York, 1989).

    Google Scholar 

  3. Aronow, B. et al. Evidence for a complex regulatory array in the first intron of the human adenosine deaminase gene. Genes Dev. 3, 1384–1400 (1989).

    Article  CAS  Google Scholar 

  4. Witte, D.P., Wiginton, D.A., Hutton, J.J. & Aronow, B.J. Coordinate developmental regulation of purine catabolic enzyme expression in gastrointestinal and postimplantation reproductive tracts. J. Cell Biol. 115, 179–190 (1991).

    Article  CAS  Google Scholar 

  5. Hirschhorn, R. Adenosine deaminase deficiency. in Immunodeficiency Reviews (ed. Rosen, F.S. & Seligmann, M.) 175–198 (Harwood Academic, New York, 1990).

    Google Scholar 

  6. Giblett, E.R., Anderson, J.E., Cohen, F., Pollara, B. & Meuwissen, H.J. Adenosine deaminase deficiency in two patients with severely impaired cellular immunity. Lancet II, 1067–1069 (1972).

    Article  Google Scholar 

  7. Hershfield, M.S. & Mitchell, B.S. Immunodeficiency diseases caused by adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency. in The Molecular and Metabolic Basis of Inherited Disease (ed. Scriver, C.R., Beaudet, A.L, Sly, W.S. & Valle, D.) 1725–1768 (McGraw-Hill, New York, 1994).

    Google Scholar 

  8. Ratech, H. et al. Pathologic findings in adenosine-deaminase-deficient severe combined immunodeficiency I. Kidney, adrenal gland, and chondro-osseous tissue alterations. Am. J. Pathol. 120, 157–169 (1985a).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ratech, H., Hirschhorn, R. & Greco, A. Pathologic findings in adenosine deaminase-severe combined immunodeficiency II. Thymus, spleen, Lymph node, and gastrointestinal tract lymphoid tissue alterations. Am. J. Pathol. 135, 1145–1156 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoogerbrugge, P., van Beusechem, V.W., Kaptein, L.C.M., Einerhand, M.P.W. & Valerio, D. Gene therapy for adenosine deaminase deficiency. Brit. med. Bull. 51, 72–61 (1995).

    Article  CAS  Google Scholar 

  11. Cohen, A., Hirschhorn, R., Horowitz, S.D., Rubinstein, A. & Polmar, S.H. Deoxyadenosine triphosphate as a potentially toxic metabolite in adenosine deaminase deficiency. Proc. natn. Acad. Sci. U.S.A. 75, 472–476 (1978).

    Article  CAS  Google Scholar 

  12. Coleman, M.S. et al. Identification and quantitation of adeninedeoxynucleotides in erythrocytes of a patient with adenosine deaminase deficiency and severe immunodeficiency. J. biol. Chem. 253, 1619–1626 (1978).

    CAS  PubMed  Google Scholar 

  13. Ullman, B., Gudas, L.J., Cohen, A. & Martin, D.W.J. Deoxyadenosin metabolism and cytotoxicity in cultured mouse lymphoma cells A model for immunodeficiency disease. Cell 14, 365–375 (1978).

    Article  CAS  Google Scholar 

  14. Seto, S., Carrera, C.J., Kubota, M., Wasson, D.B. & Carson, D.A. Mechanism of deoxyadenosine and 2-chlorodeoxyadenosine toxicity to nondividing human lymphocytes. J. Clin. Invest. 75, 377–383 (1985).

    Article  CAS  Google Scholar 

  15. Kizaki, H., Shimada, H., Ohsaka, F., Sakurada, T. Adenosine, deoxyadenosine, and deoxyguanosine induce DNAcleavage in mouse thymocytes. J. Immunol. 141, 1652–1657 (1988).

    CAS  PubMed  Google Scholar 

  16. Kredich, M.W. & Martin, D.W.J. Role of S-adenosylhomocysteine in adenosine-mediated toxicity in cultured mouse T-lymphoma cells. Cell 12, 931–938 (1977).

    Article  CAS  Google Scholar 

  17. Hershfield, M.S. Apparent suicide inactivation of human lymphoblast S-adenosyl-homocysteine hydrolase by 2′-deoxyadenosine and adenine arabinoside. J. biol. Chem. 254, 22–25 (1979b).

    CAS  PubMed  Google Scholar 

  18. Hershfield, M.S., Kredich, N.M., Ownby, D.R., Ownby, H. & Buckley, R. In vivo inactivation of erythrocyte S-adenosylhomocysteine hydrolase by 2′-deoxyadenosine in adenosine deaminase-deficient patients. J. Clin. Invest. 63, 807–811 (1979a).

    Article  CAS  Google Scholar 

  19. Kredich, N.M., Hershfield, M.S. & Johnston, J.M. Role of methylation in adenosine toxicity in adenosine deaminase inhibited cells. in Inborn Errors of Specific Immunity. (ed. Pollara, B., Pickering, J., Meuwissen, H.J. & Porter, I.H.) 261–268 (Academic Press, New York, 1979).

    Google Scholar 

  20. Hershfield, M.S. & Kredich, N.M. Resistance of an adenosine kinase-deficient human lymphoblastoid cell line to effects of deoxyadenosine on growth, S-adenosylhomocysteine hydrolase inactivation, and dATP accumulation. Proc. natn. Acad. Sci. U.S.A. 77, 4292–4296 (1980).

    Article  CAS  Google Scholar 

  21. Greenberg, M.L., Chaffee, S. & Hershfield, M.S. Basis for resistance to 3-deazaaristeromycin, an inhibitor of S-adenosylhomocysteine hydrolase, in human B-lymphoblasts. J. biol. Chem. 264, 795–803 (1989).

    CAS  PubMed  Google Scholar 

  22. Wolos, J.A. et al. Selective inhibition of T-cell activation by an inhibitor of S-adenosyl-L-homocysteine hydrolase. J. Immunol. 150, 3264–3273 (1993).

    CAS  PubMed  Google Scholar 

  23. Hirschhorn, R. Overview of biochemical abnormalities and molecular genetics of adenosine deaminase deficiency. Ped. Res. 33, s35–s41 (1993).

    Article  CAS  Google Scholar 

  24. Santisteban, I. et al. Novel splicing, missense and deletion mutations in 7 adenosine deaminase deficient patients with late/delayed onset of combined immunodeficiency disease: contribution of genotype to phenotype. J. Clin. Invest. 92, 2291–2302 (1993).

    Article  CAS  Google Scholar 

  25. Shovlin, C.L. et al. Adult onset immunodeficiency caused by inherited adenosine deaminase deficiency. J. Immunol. 153, 2331–2339 (1994).

    CAS  PubMed  Google Scholar 

  26. teRiele, H., Robanus-Maandag, E. & Berns, A. Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. natn. Acad. Sci. U.S.A. 89, 5128–5132 (1992).

    Article  CAS  Google Scholar 

  27. Wilson, O.K., Rudolph, F.B. & Quiocho, F.A. Atomic structure of adenosine deaminase complexed with a transition-state analog: understanding catalysis and immunodeficiency mutations. Science 252, 1278–1284 (1991).

    Article  CAS  Google Scholar 

  28. Akeson, A.L., Winginton, D.A., Dusing, M.R., States, J.C. & Hutton, J.J. Mutant human adenosine deaminase alleles and their expression by transfection into fibroblasts. J. biol. Chem. 263, 16291–16296 (1988).

    CAS  PubMed  Google Scholar 

  29. Linch, D.C., Levinsky, R.J., Rodeck, C.H., Maclennan, K.A. & Simmonds, H.A. Prenatal diagnosis of three casesof severe combined immunodeficiency: severe T cell deficiency during the first half of gestation in fetuses with adenosine deaminase deficiency. Clin. exp. Immunol. 56, 223–232 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fowlkes, B.J. & Pardoll, D.M. Molecular and cellular events in T cell development. Adv. Immunol. 44, 207–264 (1989).

    Article  CAS  Google Scholar 

  31. Ratech, H., Hirschhorn, R. & Thorbecke, G.J. Effects of deoxycoformycin in mice III. A murine model reproducing the multi-system pathology of human adenosine deaminase deficiency. Am. J. Path. 119, 65–72 (1985).

    CAS  PubMed  Google Scholar 

  32. Tedde, A. et al. Animal model for immune dysfunction associated with adenosine deaminase deficiency. Proc. natn. Acad. Sci. U.S.A. 77, 4899–4903 (1980).

    Article  CAS  Google Scholar 

  33. Hershfield, M.S. et al. S-adenosylhomocysteine hydrolase catabolism and basis for acquired resistance during treatment of T-cell acute lymphoblastic leukemia with 2′-deoxycoformycin alone and in combination with 9-β-D-arabinofuranosyladenine. Cancer Res. 43, 3451–3458 (1983).

    CAS  PubMed  Google Scholar 

  34. Hershfield, M.S. et al. Conversion of a stem cell leukemia from a T-lymphoid to a myeloid phenotype induced by the adenosine deaminase inhibitor 2′-deoxycoformycin. Proc. natn. Acad. Sci. U.S.A. 81, 253–257 (1984).

    Article  CAS  Google Scholar 

  35. Carson, D.A., Kaye, J. & Wasson, D.B. Differences in deoxyadenosine metabolism in human and mouse lymphocytes. J. Immunol. 124, 8–12 (1980).

    CAS  PubMed  Google Scholar 

  36. Hershfield, M.S. et al. Effects of mutational loss of adenosine kinase and deoxycytidine kinase on deoxyATP accumulation and deoxyadenosine toxicity in cultured CEM cells. J. biol. Chem. 257, 6380–6386 (1982).

    CAS  PubMed  Google Scholar 

  37. Ullman, B., Levinson, B.B., Hershfield, M.S. & Martin, D.W.J. A biochemical genetic study of the role of specific nucleoside kinases in deoxyadenosine phosphorylation by cultured human cells. J. biol. Chem. 256, 848–852 (1981).

    CAS  PubMed  Google Scholar 

  38. Karlsson, A., Johansson, M. & Eriksson, S. Cloning and expression of mouse deoxycytidine kinase; pure recombinant mouse and human enzymes show differences in substrate specificity. J. biol. Chem. (1994).

  39. Gao, X., Blackburn, M.R. & Knudsen, T.B. Activation of apoptosis in early mouse embryos by 2′-deoxyadenosine exposure. Teratology 49, 1–12 (1994).

    Article  CAS  Google Scholar 

  40. Surh, C.D. & Sprent, J. T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 372, 100–103 (1994).

    Article  CAS  Google Scholar 

  41. Hirschhorn, R., Roegner, V., Rubinstein, A. & Papageorgiou, P. Plasma deoxyadenosine, adenosine, and erythrocyte deoxyATP are elevated at birth in an adenosine deaminase-deficient child. J. Clin. Invest. 65, 768–771 (1980).

    Article  CAS  Google Scholar 

  42. Olsson, R.A. & Pearson, J.D., 70, 761–845 (1990).

  43. Bontemps, F., Vincent, M.F. & van den Berghe, G. Mechanisms of elevation of adenosine levels in anoxic hepatocytes. Biochem. J. 290, 671–677 (1993).

    Article  CAS  Google Scholar 

  44. Helland, S. & Ueland, P.M. Effect of 2′-deoxycoformycin infusion on S-adenosylhomocysteine hydrolase and the amount of S-adenosylhomocysteine and related compounds in tissues of mice. Cancer Res. 43, 4142–4147 (1983).

    CAS  PubMed  Google Scholar 

  45. Wainfan, E. & Poirier, L.A. Methyl groups in carcinogenesis: effects on DNA methylation and gene expression. Cancer Res. 52, 2071s–2077s (1992).

    CAS  PubMed  Google Scholar 

  46. Miller, M.W. et al. The mouse lethal nonagouti (ax) mutation deletes the S-adenosylhomocysteine hydrolase (Ahcy) gene. EMBO J. 13, 1806–1816 (1994).

    Article  CAS  Google Scholar 

  47. Markert, M.L., Hutton, J.J., Wiginton, D.A., States, J.C. & Kaufman, R.E. Adenosine deaminase (ADA) deficiency due to deletion of the ADA gene promoter and first exon by homologous recombination between two Alu elements. J. Clin. Invest. 81, 1323–1327 (1988).

    Article  CAS  Google Scholar 

  48. Berkvens, T.M., van Ormondt, H., Gerritsen, E.J.A., Meera Khan, P. & van der Eb, A.J. Identical 3250-bp deletion between two Alul repeats in the ADA genes of unrelated ADA-SCID patients. Genomics 7, 486–490 (1990).

    Article  CAS  Google Scholar 

  49. Grosveld, F.G., Lund, T., Mellor, A.L. & Flavell, R.A. The construction of cosmid libraries which can be used to transform eukaryotic cells. Nucl. Acids Res. 10, 6715–6732 (1982).

    Article  CAS  Google Scholar 

  50. te Riele, H., Robanus-Maandag, E., Clarke, A., Hooper, M. & Berns, A. Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells. Nature 348, 649–651 (1990).

    Article  CAS  Google Scholar 

  51. Hooper, M., Friedmann, M., Reeves, R. & Magnuson, N.S. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germ line colonization by cultured cells. Nature 326, 292–295 (1987).

    Article  CAS  Google Scholar 

  52. Smith, A.G. & Hooper, M.L. Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Devl. Biol. 121, 1–9 (1987).

    Article  CAS  Google Scholar 

  53. Abbondanzo, S.J., Gadi, I. & Stewart, C.L. Derivation of embryonic stem cell lines. in Methods in Enzymology, Guide to techniques in mouse development (eds Wassarman, P. M. & De Pamphilis, M.L.) 803–822 (Academic Press, San Diego, 1993).

    Chapter  Google Scholar 

  54. Stewart, C.L. Production of chimeras between embryonic stem cells and embryos. in Methods in Enzymology, Guide to techniques in mouse development (eds Wassarman, P. M. & De Pamphilis, M.L) 823–854 (Academic Press, San Diego, 1993).

    Chapter  Google Scholar 

  55. Laird, P.W. et al. Simplified mammalian DNA isolation procedure. Nucl. Acids Res. 19, 4293–4295 (1991).

    Article  CAS  Google Scholar 

  56. Maniatis, T., Fritsch, E.F. & Sambrook, J. Molecular cloning: a laboratory manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1982).

  57. Meera Khan, P. Enzyme electrophoresis on cellulose acetate gel: zymogram patterns in man-mouse and man-chinese hamster somatic cell hybrids. Arch. Biochem. Biophys. 145, 470–483 (1971).

    Article  CAS  Google Scholar 

  58. Buchou, T. et al. Increased cyclin A and decreased cyclin D levels in adenovirus 5 E1A-transformed rodent cell lines. Oncogene. 8, 1765–1773 (1993).

    CAS  PubMed  Google Scholar 

  59. Arredondo-Vega, F.X. et al. Paradoxical expression of adenosine deaminase in T cells cultured from a patient with adenosine deaminase deficiency and combined immunodeficiency. J. Clin. Invest. 86, 444–452 (1990).

    Article  CAS  Google Scholar 

  60. Hershfield, M.S., Aiyar, V.N., Premakumar, R. & Small, W.C. S-adenosyl homocysteine hydrolase from human placenta. Biochem. J. 230, 43–52 (1985).

    Article  CAS  Google Scholar 

  61. Ossendorp, F. et al. T cell receptor-ab lacking the b-chain V domain can be expressed at the cell surface but prohibits T cell maturation. J. Immunol. 148, 3714–3722 (1992).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Migchielsen, A., Breuer, M., van Roon, M. et al. Adenosine–deaminase–deficient mice die perinatally and exhibit liver–cell degeneration, atelectasis and small intestinal cell death. Nat Genet 10, 279–287 (1995). https://doi.org/10.1038/ng0795-279

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0795-279

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing