Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour

An Erratum to this article was published on 01 October 1994

Abstract

The insulin–like growth factor–II (IGF2) and H19 genes are imprinted in mouse and human, with expression of the paternal IGF2 and maternal H19 alleles. IGF2 undergoes loss of imprinting (LOI) in most Wilms' tumours (WT). We now show that: (i) LOI of IGF2 is associated with a 80–fold down regulation of H19 expression; (ii) these changes are associated with alterations in parental–origin–specific, tissue–independent sites of DNA methylation in the H19 promoter; and (iii) loss of heterozygosity is also associated with loss of H19 expression. Thus, imprinting of a large domain of the maternal chromosome results in a reversal to a paternal epigenotype. These data also suggest an epigenetic mechanism for inactivation of H19 as a tumour suppressor gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Surani, M.A., Reik, W. & Allen, N.D. Transgenes as molecular probes for genomlo imprinting. Trends Genet. 4, 59–62 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Swain, J.L., Stewart, T.A. & Leder, P. Parental legacy determines methylation and expression of an autosomal transgene: a molecular mechanism for parental imprinting. Cell 50, 719–727 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Bartolomei, M. The search for imprinted genes. Nature Genet. 6, 4–5 (1994).

    Article  Google Scholar 

  4. DeChiara, T.M., Robertson, E.J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor-2 gene. Cell 64, 849–859 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Yee, D. et al. Insulin-like growth factor II mRNA expression in human breast cancer. Cancer Res. 48, 6691–6696 (1988).

    CAS  PubMed  Google Scholar 

  6. Lambert, S. et al. TumorIGF-II content in a patient with acolon adenocarcinoma correlates with abnormal expression of the gene. Int. J. Cancer 48, 826–830 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Shapiro, E.T. et al. Tumor hypoglycemla: relationship to high molecular weight insulin-like growth factor-II. J. clin. Invest. 85, 1672–1679 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bartolomei, M., Zemel, S. & Tilghman, S.M. Parental imprinting of the mouse h19 gene. Nature 351, 153–155 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Glaser, T., Housman, D., Lewis, W.H., Gerhard, D. & Jones, C. A fine-structure deletion map of human chromosome 11p: analysis of J1 series hybrids. Som. Cell molec. Genet 15, 477–501 (1989).

    Article  CAS  Google Scholar 

  10. Henry, I. et al. Uniparental paternal disomy In a genetic cancer-predisposing syndrome. Nature 351, 665–667 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Rainier, S. et al. Relaxation of imprinted genes In human cancer. Nature 362, 747–749 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Ogawa, O. et al. Relaxation of insulin-like growth factor II gene imprinting Implicated in Wilms' tumour. Nature 362, 749–751 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Giannoukakis, N., Deal, C., Paquette, J., Goodyer, C.G. & Polychronakos, C. Parental genomic imprinting of the human IGF2 gene. Nature Genet. 4, 98–101 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Y. et al. Imprinting of human H19: allele-specific CpG Methylation, loss of the active allele in Wilrns Tumor, and potential for somatic allele switching. Am. J. hum. Genet 53, 113–124 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rachmilewltz, J. et al. Parental imprlnting of the human H19 gene. FEBS Lett. 309, 25–28 (1992).

    Article  Google Scholar 

  16. Hao, Y., Crenshaw, T., Moulton, T., Newcomb, E. & Tycko, B. Tumour-suppressor activity of H19 RNA. Nature 365, 764–767 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Weksberg, R., Shen, D.R., Fei, Y.L., Song, Q.L. & Squire, J. Disruption of insulin-like growth factor 2 imprinting In Beckwith-Wiedemann syndrome. Nature Genet. 5, 143–150 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Ogawa, O. et al. Constitutional relaxation of insulin-like growth factor II gene imprinting associated with Wilms' tumour and gigantism. Nature Genet. 5, 408–412 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Beckwith, J.B., Kiviat, N.B. & Bonadlo, J.F. Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms' tumor. Embryol. Devel. 1–36 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Schroeder, W.T. et al. Nonrandom loss of maternal chromosome 11 alleles in Wilms tumors. Am. J. hum. Genet. 40, 413–420 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mannens, M. et al. Molecular nature of genetic changes resulting in loss of heterozygoslty of chromosome 11 in Wilms' tumours. Hum. Genet. 81, 41–48 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Wilkins, R.J. Genomic imprinting and carcinogenesis. Lancet 1, 329–331 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Ferguson-Smith, A.C., Sasaki, H., Cattanach, B.M. & Surani, M.A. Parental-origin-specific epigenetic modification of the mouse h19 gene. Nature 362, 751–755 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Bartolomel, M.S., Webber, A.L., Brunkow, M.E. & Tilghman, S.M. Epigenetic mechanisms underlying the imprinting of the mouse h19 gene. Genes Devel. 7, 1663–1673 (1993).

    Article  Google Scholar 

  25. Feinberg, A.P. & Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89–92 (1983).

    Article  CAS  PubMed  Google Scholar 

  26. Goelz, S.E., Vogelstein, B., Hamilton, S.R. & Feinberg, A.P. Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 228, 187–190 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Baylin, S.B. et al. Hypermethylation of the 5′ region of the calcitonin gene is a property of human lymphoid and acute myeloid malignancies. Blood 70, 412–417 (1987).

    CAS  PubMed  Google Scholar 

  28. Henry, I. et al. Somatic mosaicism for partial paternal isodisomy in Wiedemann-Beckwlth syndrome: a post-fertilization event. Bur. J. hum. Genet 1, 19–29 (1993).

    Article  CAS  Google Scholar 

  29. Koi, M. et al. Tumor cell growth arrest caused by subchromosomal transferable DNA fragments from human chromosome 11. Science 260, 361–364 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Feinberg, A. Genomic imprinting and gene activation in cancer. Nature Genet. 4, 110–113 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Tatof, K.D. & Henikoff, S. Trans-sensing effects from Drosophila to humans. Cell 65, 201–203 (1991).

    Article  Google Scholar 

  32. Cattanach, B.M. & Beechey, C.V. Autosomal and X-chromosome imprinting. Development (Suppl.) 63–72 (1990).

  33. Moore, T. & Haig, D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 7, 45–49 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Hochberg, A., DeGroot, N., Rachmllewitz, J. & Gonik, B. Genetic imprinting in human evolution: the decisive role of maternal lineage. Med. Hypotheses 41, 355–357 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Li, E., Beard, C. & Jaenisch, R. Role for DMA methylation in genomic imprinting. Nature 366, 362–365 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Feinberg, A.P. & Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13 (1983).

    Article  CAS  PubMed  Google Scholar 

  37. Feder, J. et al. A systematic approach for detecting high-frequency restriction fragment length polymorphisms using large genomic probes. Am. J. hum. Genet. 37, 635–649 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nelkin, B.D. et al. Structure and expression of a gene encoding human calcitonin and calcitonin gene related peptide. Biochem. Biophys. Res. Commun. 123, 648–655 (1984).

    Article  CAS  PubMed  Google Scholar 

  39. Leppert, M. et al. A partial primary genetic linkage map of chromosome 11. Cytogenet. Cell Genet. 46, 648–1967 (1987).

    Google Scholar 

  40. Wilson, J.T. et al. Insertion of synthetic copies of human globin genes into bacterial plasmids. Nucl. Acids Res. 5, 563–581 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Phillips, J.A. et al. Prenatal diagnosis of sickle cell anemia by restriction endonuclease analysis: Hind III polymorphisms in gamma-globin genes extend test applicability. Proc. natn. Acad. Sci. U.S.A. 77, 2853–2856 (1980).

    Article  CAS  Google Scholar 

  42. Tanigami, A. et al. Mapping of 262 DMA markers into 24 intervals on human chromosome 11. Am. J. hum. Genet. 50, 56–64 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bell, G.I., Karam, J.H. & Rutter, W.J. Polymorphic DNA region adjacent to the 5′ end of the human insulin gene. Proc. natn. Acad. Sci. U.S.A. 78, 5759–5763 (1981).

    Article  CAS  Google Scholar 

  44. Dull, T.J., Gray, A., Hayflick, J.S. & Ullrich, A. Insulin-like growth factor II precursor gene organization In relation to insulin gene family. Nature 310, 777–781 (1984).

    Article  CAS  PubMed  Google Scholar 

  45. Xiang, K., Cox, N.J. & Bell, G.I. Apa I and Sst I RFLP's at the insulin-like growth factor II (IGF2) locus on chromosome 11. Nucl. Acids Res. 16, 3599 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brannan, C.I., Dees, E.G., Ingram, R.S. & Tilghman, S.M. The product of the h19 gene may function as an RNA. Molec. cell. Biol. 10, 28–36 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Redeker, E., Van Moorsel, C.J., Feinberg, A.P. & Mannens, M.A. Taq I and Rsa I polymorphisms in the H19 gene (D11S813E). Hum. molec. Genet. 2, 823 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Shin, C. & Weinberg, R.A. Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell 29, 161–169 (1982).

    Article  Google Scholar 

  49. Feinberg, A.P. & Vogelstein, B. Hypomethylation of ras oncogenes in primary human cancers. Biochem. Biophys. Res. Commun. 11, 47–54 (1983).

    Article  Google Scholar 

  50. Saiki, R.K. et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354 (1985).

    Article  CAS  PubMed  Google Scholar 

  51. Tadokoro, K., Fujii, H., Inoue, T. & Yamada, M. Polymerase chain reaction (PCR) for detection of Apal polymorphism at the Insulin like growth factor II gene (lGF2). Nucl. Acids Res. 19, 6967 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rainier, S., Dobry, C.J. & Feinberg, A.P. Dinucleotide repeat polymorphism In the human insulin-like growth factor II (lGF2) gene on chromosome 11. Hum. molec. Genet. 3, 386 (1994).

    Article  CAS  Google Scholar 

  53. Zhang, Y. & Tycko, B. Monoallelic expression of the human H19 gene. Nature Genet. 1, 40–44 (1992).

    Article  CAS  PubMed  Google Scholar 

  54. Church, G.M. & Gilbert, W. Genomic sequencing. Proc. natn. Acad. Sci. U.S.A. 81, 1991–1995 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steenman, M., Rainier, S., Dobry, C. et al. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour. Nat Genet 7, 433–439 (1994). https://doi.org/10.1038/ng0794-433

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0794-433

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing