Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

3,400 new expressed sequence tags identify diversity of transcripts in human brain

Abstract

We present the results of the partial sequencing of over 3,400 expressed sequence tags (ESTs) from human brain cDNA clones, which increases the number of distinct genes expressed in the brain, that are represented by ESTs, to about 6,000. By choosing clones in an unbiased manner, it is possible to construct a profile of the transcriptional activity of the brain at different stages. Proteins that comprise the cytoskeleton are the most abundant; however, a large variety of regulatory proteins are also seen. About half of the ESTs predicted to contain a protein–coding region have no matches in the public peptide databases and may represent new gene families.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Adams, M.D. et al. Complementary DNA sequencing: Expressed sequence tags and human genome project. Science 252, 1651–1656 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Adams, M.D. et al. Sequence identification of 2,375 human brain genes. Nature 355, 632–634 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Höög, C. Isolation of a large number of novel mammalian genes by a differential cDNA library searching strategies. Nucl. Acids Res. 19, 6123–6127 (1991).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Waterston, R. et al. A survey of expressed genes in Caenorhabditis elegans. Nature Genet. 1, 114–123 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. McCombie, W.R. et al. Caenorhabditis elegans expressed sequence tags identify gene families and potential disease gene homologues. Nature Genet. 1, 124–131 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Okubo, K. et al. Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nature Genet. 2, 173–179 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Khan, A.S. et al. Single pass sequencing and physical and genetic mapping of human brain cDNAs. Nature Genet. 2, 180–185 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Adams, M.D. Rapid cDNA sequencing (expressed sequence tags) from a directionally cloned human infant brain cDNA library. Nature Genet. (in the press).

  9. Takahashi, S. et al. Rabbit very low density lipoprotein receptor: A low density lipoprotein receptor like protein with distinct ligand specificity. Proc. natn. Acad. Sci. U.S.A. 89, 9252–9256 (1992).

    Article  CAS  Google Scholar 

  10. Ullrich, A. et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309, 418–425 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Yamamoto, T. et al. The human LDL receptor: A cysteine-rich protein with multiple Alu sequences in its mRNA. Cell 39, 27–38 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. Herz, J. et al. Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO J. 7, 4119–4127 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kristensen, T. et al. Evidence that the newly cloned low-density-lipoprotein receptor related protein (LRP) in the alpha2-macroglobulin receptor. FEBS Lett. 276, 151–155 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Chardin, P. et al. The KUP gene, located on human chromosome 14, encodes a protein with two distant zinc fingers. Nucl. Acids Res. 19, 1431–1436 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harrison, S. & Travers, A. The tramtrack gene encodes a Drosophila finger protein that interacts with the ftz transcriptional regulatory region and shows a novel embryonic expression pattern. EMBO J. 9, 207–216 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. DiBello, P. et al. The Drosophila broad complex encodes a family of related proteins containing zinc fingers. Genetics 129, 385–397 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Upton, C. et al. Myxoma virus and malignant rabbit fibroma virus encode a serpin-like protein important for virus virulence. Virology 179, 618–631 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Howard, S. et al. Vaccinia virus homologues of the Shope Fibroma Virus inverted terminal repeat proteins and a discontinious ORF related to the tumor necrosis factor receptor family. Virology 180, 633–647 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Uberbacher, E. & Mural, R. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc natn. Acad. Sci. U.S.A. 88, 11261–11265 (1991).

    Article  CAS  Google Scholar 

  20. Kerlavage, A. et al. Analysis and management of data from high-throughput expressed sequence tag projects. Proc. 26th Hawaii Int. Conf. on System Sciences. 585–594 (IEEE Computer Society Press, Los Alamitos, CA. 1993).

    Google Scholar 

  21. Chothia, C. One thousand families for the molecular biologist. Nature 357, 543–544 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Altschul, S. et al. Basic local alignment search tool. J. molec. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Sulston, J. et al. The C. elegans genome sequencing project: a beginning. Nature 356, 37–41 (1992).

    Article  PubMed  Google Scholar 

  24. Oliver, S.G. et al. The complete DNA sequence of yeast chromosome III. Nature 357, 38–46 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Bork, P. et al. What's in a genome? Nature 358, 287 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Martin-Gallardo, A. et al. Automated DNA sequencing and analysis of 106 kilobases from human chromosome 19q13.3. Nature Genet. 1, 348–353 (1992).

    Article  PubMed  Google Scholar 

  27. McCombie, W.R. et al. Expressed genes, Alu repeats and polymorphisms in cosmids sequenced from chromosome 4p16.3. Nature Genet. 1, 348–353 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Fields, C. & Soderlund, C. GM: A practical tool for automating DNA sequence analysis. Comp. Applic. Biosci. 6, 263–270 (1990).

    CAS  Google Scholar 

  29. Soderlund, C. et al. GM: A tool for exploratory analysis of DNA sequence data. Proc. Hawaii Int. Conf. on System Sciences. 653–662 (IEEE Computer Society Press, Los Alamitos, CA.1992).

    Google Scholar 

  30. Pearson, W.R. & Lipman, D.J. Improved tools for biological sequence comparison. Proc. natn. Acad. Sci. U.S.A. 85, 2444 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, M., Kerlavage, A., Fields, C. et al. 3,400 new expressed sequence tags identify diversity of transcripts in human brain. Nat Genet 4, 256–267 (1993). https://doi.org/10.1038/ng0793-256

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0793-256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing