Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Telomere capture stabilizes chromosome breakage

Abstract

Terminal deletions are found frequently in both malignancies and clinically recognizable deletion syndromes in man. Little is known, particularly in cancer, of the specific mechanisms which lead to the generation of deleted chromosomes or the process by which these broken chromosomes are stabilized. We demonstrate that several examples of apparent terminal deletions are, in fact, subtelomeric translations which were not detectable using conventional cytogenetics. The unexpectedly high frequency of this phenomenon and the diversity of partner chromosomes involved in the subtelomeric translocations is consistent with a model in which telomere capture can stabilize chromosome breakage in man.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mitelman, F. Catalog of Chromosome Aberrations in Cancer (Wiley-Liss, New York, 1991).

    Google Scholar 

  2. Sandberg, A. The Chromosomes in Human Cancer and Leukemia (Elsevier, New York, 1990).

    Google Scholar 

  3. Trent, J. et al. Science 247, 568–571 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Bridges, C.B. Genetics 2, 445–465 (1917).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bridges, C.B. Aberrations in chromosome materials. Scient. Pap. 2nd Int. Congr. Eugenics 1, 76 (1923).

    Google Scholar 

  6. Painter, T.S. & Muller, H.J. Parallel cytology and genetics of induced translocations and deletions in Drosophila. J. Hered. 20, 287–298 (1929).

    Article  Google Scholar 

  7. McClintock, B. The production of homozygous deficient tissues with mutant characteristics by means of the aberrant behavior of ring-shaped chromosomes. Genetics 23, 315–376 (1938).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Meltzer, P.S., Guan, X.-Y., Burgess, A. & Trent, J.M. Rapid generation of region specific probes by chromosome microdissection and their application. Nature Genet. 1, 24–28 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Dowdy, S., Scanlon, D., Fashing, C., Casey, L. & Stanbridge, E. Irradiation microcell-mediated chromosome transfer (XMMCT): thegeneration of specific chromosomal arm deletions. Genes Chrom. Cancer 2, 318–327 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Meese, E. et al. Development and utilization of a somatic cell hybrid mapping panel to assign Not1 linking probes to the long arm of human chromosome 6. Genomics 12, 542–548 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. McClintock, B. Cytological observations of deficiencies involving known genes, translocations and an inversion in Zea mays. Univ. Mo. Agric. Exp. Station Res. Bull. 163, 3–30 (1931).

    Google Scholar 

  12. Muller, H.J. The re-making of chromosomes. Collecting Net, Woods Hole 13, 181–195 and 198 (1938).

    Google Scholar 

  13. Haber, J.E. & Thorburn, P.C. Healing of broken linear dicentric chromosomes in yeast. Genetics 106, 207–226 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Blackburn, E.H. Structure and function of telomeres. Nature 350, 569–573 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Heim, S. & Mitelman, F. Cancer Cytogenetics (A. Liss, New York, 1987).

    Google Scholar 

  16. Altherr, M. et al. Molecular confirmation of Wolf-Hirschhorn syndrome with a subtle translocati n of chromosome 4. Am. J. hum. Genet. 49, 1235–1242 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuwano, A., Ledbetter, S.A., Dobyns, W.B., Emanuel, B.S., Ledbetter, D.H. Detection of deletions and cryptic translocations in Miller-Dieker syndrome by in situ hybridization. Am. J. hum. Genet. 49, 707–714 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ledbetter, D. Minireview: cryptic translocations and telomere integrity. Am. J. hum. Genet. 51, 451–456 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Blackburn, E.H. & Karrer, K.M. Genomic reorganization in ciliated protozoans. Am. Rev. Genet. 20, 501–521 (1986).

    Article  CAS  Google Scholar 

  20. Kamper, J., Meinhardt, F., Gunge, N. & Esser, K. In vivo construction of linear vectors based on killer plasmids from Kluyveromyces lactis: selecton of a nuclear gene results in attachment of telomeres. Molec. cell. Biol. 9, 3931–3937, 1989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jager, D. & Philippsen, P. Stabilization of dicentric chromosomes in Saccharomyces cerevisiae by telomere addition to broken ends or by centromere deletion. EMBO J. 8, 247–254, 1989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wilkie, A.O.M., Lamb, J., Harris, P.C., Finney, R.D. & Higgs, D.R. A truncated human chromosome 16 associated with alpha thalassaemia is stabilized by addition of telomeric repeat (TTAGGG)n. Nature 346, 868–671 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Morin, G. Recognition of a chromosome truncation site associated with alpha-thalassaemia by human telomerase. Nature 353, 454–456 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Murane, J.P. & Yu, L.-C. Acquisition of telomere repreat sequences by transfected DNA integrated at the site of a chromosome break. Molec. cell. Biol. 13, 977–983, 1993.

    Article  Google Scholar 

  25. de Lange, T., Shiue, L., Myers, R.M., Cox, D.R., Naylor, S.L., Killery, A.M. & Varmus, H.E. Structure and variability of human chromosome ends. Molec. cell Biol. 10, 518–527 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pinkel, D., Landegent, J., Collins, C., Fuscoe, J., Segraves, R., Lucas, J. & Gray, J. Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc. natn. Acad. Sci. U.S.A. 85, 9138–9142 (1988).

    Article  CAS  Google Scholar 

  27. Guan, X.-Y., Meltzer, P.S., Cao, J. & Trent, J.M. Rapid generation of region-specific genomic clones by chromosome microdissection: isolation of DNA from a region frequently deleted in malignant melanoma. Genomics 14, 680–684 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Telenius, H. et al. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13, 718–725 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. IJdo, J.W., Wells, R.A., Baldini, A. & Reeders, S.T. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acid Res. 19, 19:4780 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meltzer, P., Guan, XY. & Trent, J. Telomere capture stabilizes chromosome breakage. Nat Genet 4, 252–255 (1993). https://doi.org/10.1038/ng0793-252

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0793-252

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing