Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1

Abstract

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant disorder characterized by neurodegeneration of the cerebellum, spinal cord and brainstem. A 1.2–Megabase stretch of DNA from the short arm of chromosome 6 containing the SCA1 locus was isolated in a yeast artificial chromosome contig and subcloned into cosmids. A highly polymorphic CAG repeat was identified in this region and was found to be unstable and expanded in individuals with SCA1. There is a direct correlation between the size of the (CAG)n repeat expansion and the age–of–onset of SCA1, with larger alleles occurring in juvenile cases. We also show that the repeat is present in a 10 kilobase mRNA transcript. SCA1 is therefore the fifth genetic disorder to display a mutational mechanism involving an unstable trinucleotide repeat.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Schut, J.W. Hereditary ataxia: clinical study through six generations. Arch. Neurol. Psychiat. 63, 535–567 (1954).

    Article  Google Scholar 

  2. 2

    Currier, R.D., Glover, G., Jackson, J.F. & Tipton, A.C. Spinocerebellar ataxia: study of a large kindred. Neurology 22, 1040–1043 (1972).

    CAS  Article  Google Scholar 

  3. 3

    Nino, H.E., Noreen, H.J. & Dubey, D.P. A family with hereditary ataxia: HLA typing. Neurology 30, 12–20 (1980).

    CAS  Article  Google Scholar 

  4. 4

    Zoghbi, H.Y. et al. Spinocerebellar ataxia: variable age of onset and linkage to human leukocyte antigen in a large kindred. Ann. Neurol. 23, 580–584 (1988).

    CAS  Article  Google Scholar 

  5. 5

    Greenfield, J.G. The spino-cerebellar degenerations (Charles C. Thomas, Springfield, Illinois, 1954).

    Google Scholar 

  6. 6

    Haines, J.L., Schut, L.J. & Weitkamp, L.R. Spinocerebellar ataxia in large kindred: age at onset, reproduction, and genetic linkage studies. Neurology 34, 1542–1548 (1984).

    CAS  Article  Google Scholar 

  7. 7

    Brook, J.D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992).

    CAS  Article  Google Scholar 

  8. 8

    Bruner, H.G. et al. Reverse mutation in myotonic dystrophy. New Engl. J. Med. 328, 476–480 (1993).

    Article  Google Scholar 

  9. 9

    Buxton, J. et al. Detection of an unstable fragment of DNA specific to individuals with myotonic dystrophy. Nature 355, 547–548 (1992).

    CAS  Article  Google Scholar 

  10. 10

    Fu, Y.-H. et al. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67, 1047–1058 (1991).

    CAS  Article  Google Scholar 

  11. 11

    Fu, Y.-H. et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255, 1256–1259 (1992).

    CAS  Article  Google Scholar 

  12. 12

    Harley, H.G. et al. Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy. Nature 355, 545–546 (1992).

    CAS  Article  Google Scholar 

  13. 13

    Harley, H.G. et al. Unstable DNA sequence in myotonic dystrophy. Lancet 339, 1125–1128 (1992).

    CAS  Article  Google Scholar 

  14. 14

    Kremer, E.J. et al. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 252, 1711–1714 (1991).

    CAS  Article  Google Scholar 

  15. 15

    Verkerk, A.J.M.H. et al. Identification of a gene (FMR–1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914 (1991).

    CAS  Article  Google Scholar 

  16. 16

    Mahadevan, M. et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255 (1992).

    CAS  Article  Google Scholar 

  17. 17

    The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's Disease Chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  18. 18

    La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fishbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    CAS  Article  Google Scholar 

  19. 19

    Yakura, H., Wakisaka, A., Fujimoto, S. & Itakura, K. Hereditary ataxia and HLA genotypes. New Engl. J. Med. 291, 154–155 (1974).

    CAS  PubMed  Google Scholar 

  20. 20

    Jackson, J.F., Currier, R.D., Terasaki, P.I. & Morton, N.E. Spinocerebellar ataxia and HLA linkage: risk prediction by HLA typing. New Engl. J. Med. 296, 1138–1141 (1977).

    CAS  Article  Google Scholar 

  21. 21

    Ranum, L.P.W. et al. Localization of the autosomal dominant, HLA-linked spinocerebellar ataxia (SCA1) locus in two kindreds within an 8cM subregion of chromosome 6p. Am. J. hum. Genet. 49, 31–41 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Kwiatkowski, T.J. Jr. et al. The gene for autosomal dominant spinocerebellar ataxia (SCA1) maps centromeric to D6S89 and shows no recombination, in nine large kindreds, with a dinudeotide repeat at the AM10 locus. Am. J. hum. Genet. (in the press).

  23. 23

    La Spada, A.R. et al. Meiotic stability and genotype-phenotype correlation of the trinucleotide repeat in X-linked spinal and bulbar muscular atrophy. Nature Genet. 2, 301–304 (1992).

    CAS  Article  Google Scholar 

  24. 24

    Coutinho, P. & Andrade, C. Autosomal dominant system degeneration in Portuguese families of the Azores. Neurology 28, 703–709 (1978).

    CAS  Article  Google Scholar 

  25. 25

    Takiyama, Y. et al. The gene for Machado-Joseph disease maps to human chromosome 14q. Nature Genet. 4, 300–304 (1993).

    CAS  Article  Google Scholar 

  26. 26

    Harding, A.E. Genetic aspects of autosomal dominant late onset cerebellar ataxia. J. med. Genet. 18, 436–441 (1981).

    CAS  Article  Google Scholar 

  27. 27

    Orozco, G. et al. Dominantly inherited olivopontocerebellar atrophy from eastern Cuba: clinical, neuropathological, and biochemical findings. J. neurol. Sci. 93, 27–50 (1989).

    Article  Google Scholar 

  28. 28

    Gispert, S. et al. Chromosomal assignment of the second (Cuban) locus for autosomal dominant cerebellar atrophy (SCA2) to human chromosome 12q23–24.1. Nature Genet. 4, 295–299 (1993).

    CAS  Article  Google Scholar 

  29. 29

    Richards, R.I. et al. Evidence of founder chromosomes in fragile X syndrome. Nature Genet. 1, 257–260 (1992).

    CAS  Article  Google Scholar 

  30. 30

    Harley, H.G. et al. Detection of linkage disequilibrium between the myotonic dystrophy locus and a new polymorphic DNA marker. Am. J. hum. Genet 49, 68–75 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Quigley, C.A. et al. Complete deletion of the androgen receptor gene: definion of the null phenotype of the androgen insensitivity syndrome and determination of carrier status. J. clin. endocrinol. Metab. 74, 927–933 (1992).

    CAS  Article  Google Scholar 

  32. 32

    Trifiro, M. et al. The 56/58 kDa androgen-binding protein in male genital skin fibroblasts with a deleted androgen receptor gene. Molec. cell. endocrinol. 75, 37–47 (1991).

    CAS  Article  Google Scholar 

  33. 33

    Wharton, K.A., Johansen, K.M., Xu, T. & Artavanis-Tsakonas, S. Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43, 567–581 (1985).

    CAS  Article  Google Scholar 

  34. 34

    Vaessin, H. et al. prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila. Cell 67, 941–953 (1991).

    CAS  Article  Google Scholar 

  35. 35

    Bellen, H.J., Kooyer, S., D'Evelyn, D. & Pearlman, J. The Drosophila Couch potato protein is expressed in nuclei of peripheral neuronal precursors and shows homology to RNA-binding proteins. Genes Dev. 6, 2125–2136 (1992).

    CAS  Article  Google Scholar 

  36. 36

    Courey, A.J., Holtzman, D.A., Jackson, S.P. & Tjian, R. Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Cell 59, 827–836 (1989).

    CAS  Article  Google Scholar 

  37. 37

    Benson, M. & Pirrotta, V. The Drosophila zeste protein binds cooperatively to sites in many gene regulatory regions: implications for transvection and gene regulation. EMBO J. 7, 3907–3915 (1988).

    CAS  Article  Google Scholar 

  38. 38

    Rich, S.S., Wilkie, P., Schut, L., Vance, G. & Orr, H.T. Spinocerebellar ataxia: localization of an autosomal dominant locus between two markers on human chromosome 6. Am. J. hum. Genet. 41, 524–531 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Zoghbi, H.Y., Daiger, S.P., McCall, A., O'Brien, W.E. & Beaudet, A.L. Extensive DNA polymorphism at the factor Xllla (F13a) locus and linkage to HLA. Am. J. hum. Genet. 42, 877–883 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  41. 41

    Weissenbach, J. et al. A second-generation linkage map of the human genome. Nature 359, 794–801 (1992).

    CAS  Article  Google Scholar 

  42. 42

    Albertsen, H.M. et al. Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents. Proc. natn. Acad. Sci. U.S.A. 87, 4256–4260 (1990).

    CAS  Article  Google Scholar 

  43. 43

    Brownstein, B.H. et al. Isolation of single-copy human genes from a library of yeast artificial chromosome clones. Science 244, 1348–1351 (1989).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Orr, H., Chung, My., Banfi, S. et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4, 221–226 (1993). https://doi.org/10.1038/ng0793-221

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing