Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Maternal but not paternal transmission of 15q11–13–linked nondeletion Angelman syndrome leads to phenotypic expression

Abstract

Angelman syndrome (AS) may result from either maternally inherited deletions of chromosome 15q11–13 or from paternal uniparental disomy for chromosome 15. This is in contrast to Prader–Willi syndrome (PWS), which is caused by either paternal deletion of this region or maternal disomy for chromosome 15. However, 40% of AS patients inherit an apparently intact copy of chromosome 15 from each parent. We now describe a family in which three sisters have given birth to four AS offspring who have no evidence of deletion or paternal disomy. We show that AS in this family is caused by a mutation in 15q11–13 that results in AS when transmitted from mother to child, but no phenotype when transmitted paternally. These results suggest that the loci responsible for AS and PWS, although closely linked, are distinct.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Angelman, H. Develop. med. Child Neurol. 7, 681–688 (1965).

    Article  Google Scholar 

  2. Kaplan, L.C. et al. Am. J. med. Genet. 28, 45–53 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Magenis, R.E., Brown, M.G., Lacy, D.A., Budden, S. & LaFranchi, S. Am. J. med. Genet. 28, 829–838 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Ledbetter, D.H. et al. New Engl. J. Med. 304, 325–329 (1981).

    Article  CAS  PubMed  Google Scholar 

  5. Knoll, J.H.M. et al. Am. J. med. Genet. 32, 285–290 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Magenis, R.E. et al. Am. J. med. Genet 35, 333–349 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Williams, C.A. et al. Am. J. med. Genet. 35, 350–353 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Butler, M. G. & Palmer, C.G. Lancet 1, 1285–1286 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nicholls, R.D., Knoll, J.H.M., Butler, M. G., Karam, S. & Lalande, M. Nature 342, 281–285 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Greenberg, F. & Ledbetter, D.H. Am. J. med. Genet. 28, 813–820 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Wagstaff, J. et al. Am. J. hum. Genet. 49, 330–337 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hulten, M. et al. Lancet 338, 638–639 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Hamabe, J. et al. Am. J. med. Genet. 41, 64–68 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Saitoh, S. et al. Lancet 339, 366–367 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Knoll, J.H.M. et al. Am. J. hum. Genet. 47, 149–155 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Knoll, J.H.M., Glatt, K.A., Nicholls, R.D., Malcolm, S. & Lalande, M. Am. J. hum. Genet. 48, 16–21 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Baraitser, M., Patton, M., Lam, S.T.S., Brett, E.M. & Wilson, J. Clin. Genet 31, 323–330 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Malcolm, S. et al. Lancet 337, 694–697 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Robinson, W. P. et al. Am. J. hum. Genet 49, 1219–1234 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Nicholls, R.D. et al. Am. J. med. Genet 33, 66–77 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. DeChiara, T.M., Robertson, E.J. & Efstratiadis, A. Cell 64, 849–859 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Nicholls, R.D., Mouse News Lett. 84, 87–88 (1989).

    Google Scholar 

  23. Chaillet, J.R., Knoll, J.H.M., Horsthemke, B. & Lalande, M. Genomics 11, 773–776 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Wagstaff, J., Chaillet, J.R. & Lalande, M. Genomics 11, 1071–1078 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Nakatsu, Y., Gondo, Y. & Brilliant, M. H. Mamm. Genome 2, 69–71 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Aldridge, J. et al. Am. J. hum. Genet 36, 546–564 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Feinberg, A.P. & Vogelstein, B. Anal. Biochem. 132, 6–13 (1983).

    Article  CAS  PubMed  Google Scholar 

  28. Feener, C.A., Boyce, F.M. & Kunkel, L.M. Am. J. hum. Genet 48, 621–627 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lathrop, G.M., Lalouel, J.M., Julier, C. & Ott, J. Proc. natn. Acad. Sci. U.S.A. 81, 3443–3446 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagstaff, J., Knoll, J., Glatt, K. et al. Maternal but not paternal transmission of 15q11–13–linked nondeletion Angelman syndrome leads to phenotypic expression. Nat Genet 1, 291–294 (1992). https://doi.org/10.1038/ng0792-291

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0792-291

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing