Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Characterization of the myotonic dystrophy region predicts multiple protein isoform–encoding mRNAs

Abstract

The mutation underlying myotonic dystrophy (DM) has been identified as an expansion of a polymorphic CTG–repeat in a gene encoding protein kinase activity. Brain and heart transcripts of the DM–kinase (DMR–B15) gene are subject to alternative RNA splicing in both human and mouse. The unstable [CTG]5–30 motif is found uniquely in humans, although the flanking nucleotides are also present in mouse. Characterization of the DM region of both species reveals another active gene (DMR–N9) in close proximity to the kinase gene. DMR–N9 transcripts, mainly expressed in brain and testis, possess a single, large open reading frame, but the function of its protein product is unknown. Clinical manifestation of DM may be caused by the expanded CTG–repeat compromising the (alternative) expression of DM–kinase or DMR–N9 proteins.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Harper, P.S. Myotonic Dystrophy 2nd edn (Saunders, London, 1989).

    Google Scholar 

  2. Shutler, G. et al. Genomics 13 (in the press).

  3. Jansen, G. et al. Genomics 13 (in the press).

  4. Buxton, J. et al. Nature 355, 547–548 (1992).

    CAS  Article  Google Scholar 

  5. Aslanidis, C. et al. Nature 355, 548–551 (1992).

    CAS  Article  Google Scholar 

  6. Harley, H.G. et al. Nature 355, 545–546 (1992).

    CAS  Article  Google Scholar 

  7. Brook, J.D. et al. Cell 68, 799–808 (1992).

    CAS  Article  Google Scholar 

  8. Fu, Y.-H. et al. Science 255, 1256–1258 (1992).

    CAS  Article  Google Scholar 

  9. Mahadevan, M. et al. Science 255, 1253–1256 (1992).

    CAS  Article  Google Scholar 

  10. Saunders, A.M. & Seldin, M.F. Genomics 6, 324–332 (1990).

    CAS  Article  Google Scholar 

  11. Hanks, S.K., Quinn, A.M. & Hunter, T. Science 241, 42–51 (1988).

    CAS  Article  Google Scholar 

  12. Taylor, S., Buechler, J.A. & Yonemoto, W. Ann. Rev. Biochem. 59, 971–1005 (1990).

    CAS  Article  Google Scholar 

  13. Saraste, M., Sibbald, P.R. & Wittinghofer, A. TIBS 15, 430–433 (1990).

    PubMed  Google Scholar 

  14. Soderling, T.R. J. biol. Chem. 265, 1823–1826 (1990).

    CAS  Google Scholar 

  15. George, E.L., Ober, M.B. & Emerson, C.P. Molec. cell. Biol. 9, 2957–2974 (1989).

    CAS  Article  Google Scholar 

  16. Rohrkasten, A., Meyer, H.E., Nastainczyk, M., Sieber, F. & Hofmann, J. biol. Chem. 263, 15325–15328 (1988).

    CAS  PubMed  Google Scholar 

  17. Catterall, W.A. Cell 64, 871–874 (1991).

    CAS  Article  Google Scholar 

  18. Moxley, R.T., Corbett, A.J., Minaker, K.L. & Rowe, J.W. Annl. Neurol. 15, 157–162 (1984).

    CAS  Article  Google Scholar 

  19. Roses, A.D. & Appel, S.H. Nature 250, 254 (1974).

    Article  Google Scholar 

  20. Brinkmeier, H. & Jockusch, H. Biochem. biophys. Res. Com. 148, 1383–1389 (1987).

    CAS  Article  Google Scholar 

  21. Oberlé, I. et al. Science 252, 97–1102 (1991).

    Article  Google Scholar 

  22. Yu, S. et al. Science 252, 1179–1181 (1991).

    CAS  Article  Google Scholar 

  23. Verkerk, A.J.M.H. et al. Cell 65, 905–914 (1991).

    CAS  Article  Google Scholar 

  24. La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fischbeck, K.H. Nature 352, 77–79 (1991).

    CAS  Article  Google Scholar 

  25. Pieretti, M. et al. Cell 66, 817–822 (1991).

    CAS  Article  Google Scholar 

  26. Sutherland, G.R. et al. Lancet 338, 289–292 (1991).

    CAS  Article  Google Scholar 

  27. Ravin, A. & Waring, J.J. Am. J. med. Sciences 197, 593–609 (1939).

    Article  Google Scholar 

  28. Höweler, C.J. et al. Brain 112, 779–797 (1989).

    Article  Google Scholar 

  29. Penrose, L.S. Ann. Eugen. (Lond) 14, 125–232 (1939).

    Article  Google Scholar 

  30. Hall, J.G. Am. J. hum. Genet. 46, 857–873 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Maniatis, T., Fritsch, E.F. & Sambrook, J. in Molecular Cloning a Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory, New York, 1989).

    Google Scholar 

  32. Pearson, W.R. & Lipman, D.J. Proc. natn. Acad. Sci. U.S.A. 85, 2444–2448 (1988).

    CAS  Article  Google Scholar 

  33. Auffray, C & Rougeon, F. Eur. J. Biochem. 107, 303–314 (1980).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jansen, G., Mahadevan, M., Amemiya, C. et al. Characterization of the myotonic dystrophy region predicts multiple protein isoform–encoding mRNAs. Nat Genet 1, 261–266 (1992). https://doi.org/10.1038/ng0792-261

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0792-261

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing