Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome

Abstract

The inherited osteolyses or 'vanishing bone' syndromes are a group of rare disorders of unknown etiology characterized by destruction and resorption of affected bones. The multicentric osteolyses are notable for interphalangeal joint erosions that mimic severe juvenile rheumatoid arthritis (OMIMs 166300, 259600, 259610 and 277950). We recently described an autosomal recessive form of multicentric osteolysis with carpal and tarsal resorption, crippling arthritic changes, marked osteoporosis, palmar and plantar subcutaneous nodules and distinctive facies in a number of consanguineous Saudi Arabian families1,2. We localized the disease gene to 16q12–21 by using members of these families for a genome-wide search for homozygous-by-descent microsatellite markers. Haplotype analysis narrowed the critical region to a 1.2-cM region that spans the gene encoding MMP-2 (gelatinase A, collagenase type IV; (ref. 3). We detected no MMP2 enzymatic activity in the serum or fibroblasts of affected family members. We identified two family-specific homoallelic MMP2 mutations: R101H and Y244X. The nonsense mutation effects a deletion of the substrate-binding and catalytic sites and the fibronectin type II-like and hemopexin/TIMP2 binding domains. Based on molecular modeling, the missense mutation disrupts hydrogen bond formation within the highly conserved prodomain adjacent to the catalytic zinc ion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pedigrees and haplotypes of the Saudi kindreds.
Figure 2: a, Gelatin zymography of control and affected serum samples.
Figure 3: a, Molecular representation of wildtype human MMP2.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Al-Mayouf, S.M., Majeed, M., Hugosson, C. & Bahabri, S. New form of idiopathic osteolysis: nodulosis, arthropathy and osteolysis (NAO) syndrome. Am. J. Med. Genet. 93, 5–10 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Al Aqeel, A. et al. Inherited multicentric osteolysis with arthritis: A variant resembling Torg syndrome in a Saudi family. Am. J. Med. Genet. 93, 11–18 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Huhtala, P. et al. Completion of the primary structure of the human type IV collagenase preproenzyme and assignment of the gene (CLG4) to the q21 region of chromosome 16. Genomics 6, 554–559 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Broman, K.W., Murray, J.C., Sheffield, V.C., White, R.L. & Weber, J.L. Comprehensive human genetic maps: Individual and sex-specific variation in recombination. Am. J. Hum. Genet. 63, 861–869 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sheffield, V.C. et al. A collection of tri- and tetranucleotide repeat markers used to generate high quality, high resolution human genome-wide linkage maps. Hum. Mol. Genet. 4, 1837–1844 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Yu, A.E., Murphy, A.N. & Stetler-Stevenson, W.G. in Matrix Metalloproteinases (eds. Parks, W.C. & Mecham, R.P.) 85–113 (Academic Press, San Diego, 1999).

    Google Scholar 

  7. Harris, E.D. Jr. & Krane, S.M. An endopeptidase from rheumatoid synovial tissue culture. Biochim. Biophys. Acta 258, 566–576 (1972).

    Article  CAS  PubMed  Google Scholar 

  8. Creemers, L.B. et al. Gelatinase A (MMP-2) and cysteine proteinases are essential for the degradation of collagen in soft connective tissue. Matrix Biol. 17, 35–46 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, W.T. Proteases associated with invadopodia, and their role in degradation of extracellular matrix. Enzyme Protein 49, 59–71 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Karelina, T.V., Bannikov, G.A. & Eisen, A.Z. Basement membrane zone remodeling during appendageal development in human fetal skin. The absence of type VII collagen is associated with gelatinase-A (MMP-2) activity. J. Invest. Dermatol. 114, 371–375 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Kanwar, Y.S. et al. Role of membrane-type matrix metalloproteinase 1 (MT-1-MMP), MMP-2, and its inhibitor in nephrogenesis. Am. J. Physiol. 277, F934–F947 (1999).

  12. Morgunova, E. et al. Structure of human pro-matrix metalloproteinase-2: Activation mechanism revealed. Science 284, 1667–1670 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Murphy, G. et al. The C-terminal domain of 72 kDa gelatinase A is not required for catalysis, but is essential for membrane activation and modulates interactions with tissue inhibitors of metalloproteinases. Biochem. J. 283, 637–641 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fridman, R. et al. Domain structure of human 72-kDa gelatinase/type IV collagenase. Characterization of proteolytic activity and identification of the tissue inhibitor of metalloproteinase-2 (TIMP-2) binding regions. J. Biol. Chem. 267, 15398–15405 (1992).

    CAS  PubMed  Google Scholar 

  15. Nguyen, Q. et al. Different domain interactions are involved in the binding of tissue inhibitors of metalloproteinases to stromelysin-1 and gelatinase A. Biochemistry 33, 2089–2095 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Ye, Q.Z., Johnson, L.L., Yu, A.E. & Hupe, D. Reconstructed 19 kDa catalytic domain of gelatinase A is an active proteinase. Biochemistry 34, 4702–4708 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Van Wart, H.E. & Birkedal-Hansen, H. The cysteine switch: A principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl. Acad. Sci. USA 87, 5578–5582 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weber, B.H., Vogt, G., Pruett, R.C., Stohr, H. & Felbor, U. Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby's fundus dystrophy. Nature Genet. 8, 352–356 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Ye, S. Polymorphism in matrix metalloproteinase gene promoters: implication in regulation of gene expression and susceptibility of various diseases. Matrix Biol. 7, 623–629 (2000).

    Article  Google Scholar 

  20. Rutter, J.L. et al. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription. Cancer Res. 58, 5321–5325 (1998).

    CAS  PubMed  Google Scholar 

  21. Brinckerhoff, C.E., Rutter, J.L. & Benbow, U. Interstitial collagenases as markers of tumor progression. Clin. Cancer Res. 6, 4823–4830 (2000).

    CAS  PubMed  Google Scholar 

  22. Itoh, T. et al. Unaltered secretion of beta-amyloid precursor protein in gelatinase A (matrix metalloproteinase 2)-deficient mice. J. Biol. Chem. 272, 22389–22392 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Holmbeck, K. et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99, 81–92 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Apte, S.S., Fukai, N., Beier, D.R. & Olsen, B.R. The matrix metalloproteinase-14 (MMP-14) gene is structurally distinct from other MMP genes and is co-expressed with the TIMP-2 gene during mouse embryogenesis. J. Biol. Chem. 272, 25511–25517 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Stetler-Stevenson, W.G., Krutzsch, H.C. & Liotta, L.A. Tissue inhibitor of metalloproteinase (TIMP-2): A new member of the metalloproteinase inhibitor family. J. Biol. Chem. 264, 17374–17378 (1989).

    CAS  PubMed  Google Scholar 

  26. Strongin, A.Y. et al. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J. Biol. Chem. 270, 5331–5338 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Butler, G.S. et al. The TIMP2 membrane type 1 metalloproteinase "receptor" regulates the concentration and efficient activation of progelatinase A. A kinetic study. J. Biol. Chem. 273, 871–880 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Zhao, W., Byrne, M.H., Wang, Y. & Krane S.M. Osteocyte and osteoblast apoptosis and excessive bone deposition accompany failure of collagenase cleavage of collagen. J. Clin. Invest. 106, 941–949 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Everts, V. et al. Cathepsin K deficiency, collagen degradation and coupling of bone resorption and formation. J. Bone Miner. Res. 14, S357 (2000).

    Google Scholar 

  30. Kruglyak, L., Daly, M.J., Reeve-Daly, M.P. & Lander, E.S. Parametric and non-parametric linkage analysis: A unified multipoint approach. Am. J. Hum. Genet. 58, 1347–1363 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the families who participated in these studies; M. Palmer, K. Quadrini, P. Prabhudass, R. Kahn, and K. Brown for technical assistance; and I. Visiers for discussions. This work was supported in part by grants from the National Institutes of Health, including a merit award (5 R37 DK34045), research grants (5 R01 DK26824 and R01 NS39893), a grant (5 M01 RR00071) for the Mount Sinai General Clinical Research Center, and a grant (5 P30 HD28822) for the Mount Sinai Child Health Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Martignetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martignetti, J., Aqeel, A., Sewairi, W. et al. Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome. Nat Genet 28, 261–265 (2001). https://doi.org/10.1038/90100

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90100

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing