Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mitotic replication initiation proteins are not required for pre-meiotic S phase

Abstract

Initiation of mitotic DNA replication in eukaryotes requires conserved factors, including Cdc18/CDC6 and minichromosome maintenance (MCM) proteins. We show here that these proteins are not essential for meiotic DNA replication or subsequent meiotic divisions in fission yeast. In addition, vegetative replication checkpoint genes are not required for the arrest of meiotic divisions in response to pre-meiotic S-phase delays. Genes essential for other aspects of vegetative DNA replication, however, including polymerases and DNA ligase, are also required for pre-meiotic DNA synthesis. Our results indicate that the process of replication initiation and checkpoint control may be fundamentally different in mitotic and meiotic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Meiotic progression in pat1 mutant strains.
Figure 2: Meiotic and mitotic progression in a strain where cdc18+ expression is shut off by the addition of thiamine.
Figure 3: Protein concentrations in pat1 mutant cells, synchronized as described in Fig. 1.
Figure 4: Vegetative checkpoint mutants do not affect meiotic checkpoint arrest.
Figure 5: Effects of S-phase mutants in homozygous diploids.

Similar content being viewed by others

References

  1. Donaldson, A.D. & Blow, J.J. The regulation of replication origin activation. Curr. Opin. Genet. Dev. 9, 62–68 (1999).

    Article  CAS  Google Scholar 

  2. Stillman, B. Cell cycle control of DNA replication. Science 274, 1659–1664 (1996).

    Article  CAS  Google Scholar 

  3. Carr, A.M. Control of cell cycle arrest by the Mec1(sc)/Rad3(sp) DNA structure checkpoint pathway. Curr. Opin. Genet. Dev. 7, 93–98 (1997).

    Article  CAS  Google Scholar 

  4. Rhind, N. & Russell, P. Mitotic DNA damage and replication checkpoints in yeast. Curr. Opin. Cell Biol. 10, 749–758 (1998).

    Article  CAS  Google Scholar 

  5. Yamamoto, M. The molecular control mechanisms of meiosis in fission yeast. Trends Biochem. Sci. 21, 18–22 (1996).

    Article  CAS  Google Scholar 

  6. Iino, Y., Hiramine, Y. & Yamamoto, M. The role of Cdc2 and other genes in meiosis in Schizosaccharomyces pombe. Genetics 140, 1235–1245 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Grallert, B. & Spiczki, M. Initiation of the second meiotic division in Schizosaccharomyces pombe shares common functions with that of meiosis. Curr. Genet. 15, 231–233 (1989).

    Article  Google Scholar 

  8. Grallert, B. & Sipiczki, M. Dissociation of meiotic and mitotic roles of the fission yeast cdc2 gene. Mol. Gen. Genet. 222, 473–475 (1990).

    Article  CAS  Google Scholar 

  9. Grallert, B. & Sipiczki, M. Common genes and pathways in the regulation of the mitotic and meiotic cell cycles of Schizosaccharomyces pombe. Curr. Genet. 20, 199–204 (1991).

    Article  CAS  Google Scholar 

  10. Nurse, P. Mutants of the fission yeast Schizosaccharomyces pombe which alter the shift between cell proliferation and sporulation. Mol. Gen. Genet 198, 497–502 (1985).

    Article  Google Scholar 

  11. Iino, Y. & Yamamoto, M. Mutants of Schizosaccharomyces pombe which sporulate in the haploid state. Mol. Gen. Genet. 198, 416–421 (1985).

    Article  CAS  Google Scholar 

  12. Iino, Y. & Yamamoto, M. Negative control for the intitation of meiosis in Schizosaccharomyces pombe. Proc. Natl Acad. Sci. USA 82, 2447–2451 (1985).

    Article  CAS  Google Scholar 

  13. Li, Y.F. & Smith, G.R. The Schizosaccharomyces pombe rec16 gene product regulates multiple meiotic events. Genetics 146, 146–157 (1997).

    Google Scholar 

  14. Lin, Y. & Smith, G.R. Transient, meiosis-induced expression of the rec6 and rec12 genes of Schizosaccharomyces pombe. Genetics 136, 769–779 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nasmyth, K. & Nurse, P. Cell division cycle mutants altered in DNA replication and mitosis in the fission yeast Schizosaccharomyces pombe. Mol. Gen. Genet. 182, 119–124 (1981).

    Article  CAS  Google Scholar 

  16. Aves, S., Durkacz, B., Carr, T. & Nurse, P. Cloning, sequencing and transcriptional control of the Schizosaccharomyces pombe cdc10 “start” gene. EMBO J. 4, 457–463 (1985).

    Article  CAS  Google Scholar 

  17. Simanis, V. & Nurse, P. The cell cycle control gene cdc2+ of fission yeast encodes a protein kinase potentially regulated by phosphorylation. Cell 45, 261–268 (1986).

    Article  CAS  Google Scholar 

  18. Johnston, L., Barker, D. & Nurse, P. Molecular cloning of the Schizosaccharomyces pombe DNA ligase gene cdc17 and an associated sequence promoting high frequency plasmid transformation. Gene 41, 321–325 (1986).

    Article  CAS  Google Scholar 

  19. Gould, K.L. et al. Fission yeast cdc24+ encodes a novel replication factor required for chromosome integrity. Genetics 149, 1221–1233 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. D'Urso, G. & Nurse, P. Schizosaccharomyces pombe cdc20+ encodes DNA polymerase epsilon and is required for chromosomal replication but not for the S phase checkpoint. Proc. Natl Acad. Sci. USA 94, 12491–12496 (1997).

    Article  CAS  Google Scholar 

  21. MacNeill, S.A., Moreno, S., Reynolds, N., Nurse, P. & Fantes, P.A. The fission yeast cdc1 protein, a homologue of the small subunit of DNA polymerase δ, binds to pol3 and cdc27. EMBO J. 15, 4613–4628 (1996).

    Article  CAS  Google Scholar 

  22. Iino, Y. & Yamamoto, M. The Schizosaccharomyces pombe cdc6 gene encodes the catalytic subunit of DNA polymerase δ. Mol. Gen. Genet. 254, 93–97 (1997).

    Article  CAS  Google Scholar 

  23. Fernandez Sarabia, M.-J., McInerny, C., Harris, P., Gordon, C. & Fantes, P. The cell cycle genes cdc22+ and suc22+ of the fission yeast Schizosaccharomyces pombe encode the large and small subunits of ribonucleotide reductase. Mol. Gen. Genet. 238, 241–251 (1993).

    CAS  PubMed  Google Scholar 

  24. D'Urso, G., Grallert, B. & Nurse, P. DNA polymerase α, a component of the replication initiation complex, is essential for the checkpoint coupling S phase to mitosis in fission yeast. J. Cell Sci. 108, 3109–3118 (1995).

    CAS  PubMed  Google Scholar 

  25. Parker, A.E., Clyne, R.K., Carr, A.M. & Kelly, T.J. The Schizosaccharomyces pombe rad11+ gene encodes the large subunit of replication protein A. Mol. Cell. Biol. 17, 2381–2390 (1997).

    Article  CAS  Google Scholar 

  26. Saka, Y. & Yanagida, M. Fission yeast cut5+, required for S-phase onset and M-phase restraint, is identical to the radiation-damage repair gene rad4+. Cell 74, 383–393 (1993).

    Article  CAS  Google Scholar 

  27. Fenech, M., Carr, A.M., Murray, J., Watts, F.Z. & Lehmann, A.R. Cloning and characterization of the rad4 gene of Schizosaccharomyces pombe: a gene showing short regions of sequence similarity to the human XRCC1 gene. Nucleic Acids Res. 19, 6737–6741 (1991).

    Article  CAS  Google Scholar 

  28. Forsburg, S.L. & Nurse, P. The fission yeast cdc19+ gene encodes a member of the MCM family of replication proteins. J. Cell Sci. 107, 2779–2788 (1994).

    CAS  PubMed  Google Scholar 

  29. Coxon, A., Maundrell, K. & Kearsey, S.E. Fission yeast cdc21+ belongs to a family of proteins involved in an early step of chromosome replication. Nucleic Acids Res. 20, 5571–5577 (1992).

    Article  CAS  Google Scholar 

  30. Kelly, T.J. et al. The fission yeast cdc18+ gene product couples S phase to START and mitosis. Cell 74, 371–382 (1993).

    Article  CAS  Google Scholar 

  31. Walworth, N., Davey, S. & Beach, D. Fission yeast chk1 protein kinase links the rad checkpoint pathway to cdc2. Nature 363, 368–371 (1993).

    Article  CAS  Google Scholar 

  32. Murakami, H. & Okayama, H. A kinase from fission yeast responsible for blocking mitosis in S phase. Nature 374, 817–819 (1995).

    Article  CAS  Google Scholar 

  33. Seaton, B.L., Yucel, J., Sunnerhagen, P. & Subramani, S. Isolation and characterisation of the Schizosaccharomyces pombe rad3+ which is involved in the DNA damage and DNA synthesis checkpoints. Gene 119, 83–89 (1990).

    Article  Google Scholar 

  34. Liang, D.T., Hodson, J.A. & Forsburg, S.L. Reduced dosage of a single fission yeast MCM protein causes genetic instability and S phase delay. J. Cell Sci. 112, 559–567 (1999).

    CAS  PubMed  Google Scholar 

  35. Miyake, S. et al. Fission yeast genes nda1+ and nda4+, mutations of which lead to S-phase block, chromatin alteration and Ca2+ suppression, are members of the CDC46/MCM2 family. Mol. Biol. Cell 4, 1003–1015 (1993).

    Article  CAS  Google Scholar 

  36. Maiorano, D., Blom van Assendelft, G. & Kearsey, S.E. Fission yeast cdc21, a member of the MCM protein family, is required for onset of S phase and located in the nucleus throughout the cell cycle. EMBO J. 15, 861–872 (1996).

    Article  CAS  Google Scholar 

  37. You, Z., Komamura, Y. & Ishimi, Y. Biochemical analysis of the intrinsic Mcm4-Mcm6-Mcm7 DNA helicase activity. Mol. Cell. Biol. 19, 8003–8015 (1999).

    Article  CAS  Google Scholar 

  38. Snaith, H.A. & Forsburg, S.L. Rereplication in fission yeast requires MCM proteins and other S phase genes. Genetics 152, 839–851 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nielsen, O. & Egel, R. The pat1 protein kinase controls transcription of the mating type genes in fission yeast. EMBO J. 9, 1401–1406 (1990).

    Article  CAS  Google Scholar 

  40. Daya-Makin, M., Szankasi, P., Tang, L., MacRae, D. & Pelech, S.L. Regulation of p105wee1 and p34cdc2 during meiosis in Schizosaccharomyces pombe. Biochem. Cell Biol. 70, 1088–1096 (1992).

    Article  CAS  Google Scholar 

  41. Haber, J.E. DNA recombination: the replication connection. Trends Biochem. Sci. 24, 271–275 (1999).

    Article  CAS  Google Scholar 

  42. Keeney, S., Giroux, C.N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375–384 (1997).

    Article  CAS  Google Scholar 

  43. Schild, D. & Byers, B. Meiotic effects of DNA defective cell division cycle mutants of S. cerevisiae. Chromosoma 70, 109–130 (1978).

    Article  CAS  Google Scholar 

  44. Hollingsworth, R.E. & Sclafani, R.A. Yeast pre-meiotic DNA replication utilizes mitotic origin ARS1 independently of CDC7 function. Chromosoma 102, 415–420 (1993).

    Article  CAS  Google Scholar 

  45. Johnston, L., Masai, H. & Sugino, A. First the CDKs, now the DDKs. Trends Cell Biol. 9, 249–252 (1999).

    Article  CAS  Google Scholar 

  46. Baker, B.S., Carpenter, A.T.C., Esposito, M.S., Esposito, R.E. & Sandler, L. The genetic control of meiosis. Annu. Rev. Genet. 10, 53–134 (1976).

    Article  CAS  Google Scholar 

  47. Williamson, D.H., Johnston, L.H., Fennell, D.J. & Simchen, G. The timing of S phase and other nuclear events in yeast meiosis. Exp. Cell Res. 145, 209–217 (1983).

    Article  CAS  Google Scholar 

  48. Callan, H. Replication of DNA in the chromosomes of eukaryotes. Proc. R. Soc. Lond. B. Biol. Sci. 181, 19–41 (1972).

    Article  CAS  Google Scholar 

  49. Collins, I. & Newlon, C.S. Chromosomal DNA replication initiates at the same origins in meiosis and mitosis. Mol. Cell. Biol. 14, 3524–3534 (1994).

    Article  CAS  Google Scholar 

  50. Horie, S. et al. The Schizosaccharomyces pombe mei4+ gene encodes a meiosis-specific transcription factor containing a forkhead DNA-binding domain. Mol. Cell. Biol. 18, 2118–2129 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Carr, B. Grallert, O. Nielsen, N. Rhind, C. Shimoda and G. Smith for strains; B. Grallert, G. Karpen and M. McKeown for discussions; and T. Hunter, G. Karpen, M. McKeown, S. Pasion and T. Pollard for critical reading of the manuscript. S.L.F. acknowledges a guest professorship from the University of Copenhagen and the hospitality of O. Nielsen and R. Egel in developmental stages of this project. This work was supported by National Institutes of Health grant GM54797 to S.L.F., who is a scholar of the Leukemia & Lymphoma Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan L. Forsburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forsburg, S., Hodson, J. Mitotic replication initiation proteins are not required for pre-meiotic S phase. Nat Genet 25, 263–268 (2000). https://doi.org/10.1038/77015

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77015

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing