Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in cornea-specific keratin K3 or K12 genes cause Meesmann's corneal dystrophy

Abstract

The intermediate filament cytoskeleton of corneal epithelial cells is composed of cornea-specific keratins K3 and K12 (refs 1,2). Meesmann's corneal dystrophy (MCD) is an autosomal dominant disorder causing fragility of the anterior corneal epithelium3,4, where K3 and K12 are specifically expressed5. We postulated that dominant-negative mutations in these keratins might be the cause of MCD. K3 was mapped to the type-ll keratin gene cluster on 12q; and K12 to the type-l keratin cluster on 17q using radiation hybrids. We obtained linkage to the K12 locus in Meesmann's original German kindred (Zmax=7.53; θ=0) and we also showed that the phenotype segregated with either the K12 or the K3 locus in two Northern Irish pedigrees. Heterozygous missense mutations in K3 (E509K) and in K12 (V143L; R135T) completely co-segregated with MCD in the families and were not found in 100 normal unrelated chromosomes. All mutations occur in the highly conserved keratin helix boundary motifs, where dominant mutations in other keratins have been found to severely compromise cytoskeletal function, leading to keratinocyte fragility phenotypes. Our results demonstrate for the first time the molecular basis of Meesmann's corneal dystrophy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Moll, R., Franke, W.W., Schiller, D.L., Geiger, B. & Krepler, R. The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells. Cell 31, 11–24 (1982).

    Article  CAS  Google Scholar 

  2. Sun, T.-T. et al. in The Transformed Phenotype (eds Levine, A.J., Vande Woude, G.F., Topp, W.C & Watson, J.D.) 169–176 (Cold Spring Harbor Laboratory, New York, 1984).

    Google Scholar 

  3. Meesmann, A. & Wilke, F. Klinische und anatomische Untersuchungen ueber eine bisher unbekannte, dominant vererbte Epitheldystrophie der Hornhaut. Klin. Mbl. Augenheilk. 103, 361–391 (1939).

    Google Scholar 

  4. Fine, B.S., Yanoff, M., Pitts, E. & Slaughter, F.D. Meesmann's epithelial dystrophy of the cornea. Am. J. Opthal. 83, 633–642 (1977).

    Article  CAS  Google Scholar 

  5. Liu, C.Y. et al. Cornea-specific expression of K12 keratin during mouse development. Curr. Eye Res. 12, 963–74 (1993).

    Article  CAS  Google Scholar 

  6. Lane, E.B. in Connective Tissue and its Heritable Disorders. Molecular, Genetic and Medical Aspects(eds. Royce, P.M. & Steinmann, B.) 237–247 (Wiley-Liss Inc., New York, 1993).

    Google Scholar 

  7. Quinlan, R.A., Hutchison, C.J. & Lane, E.B. Intermediate Filaments(Academic Press Ltd., London 1994).

  8. McLean, W.H.I. & Lane, E.B. Intermediate filaments in disease. Curr. Opin. Cell Biol. 7, 118–125 (1995).

    Article  CAS  Google Scholar 

  9. Corden, L.D. & McLean, W.H.I. Human keratin diseases: Hereditary fragility of specific epithelial tissues. Exp. Dermatol. 5, 297–307 (1996).

    Article  CAS  Google Scholar 

  10. Schermer, A., Galvin, S. & Sun, T.-T. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell. Biol. 103, 49–62 (1986).

    Article  CAS  Google Scholar 

  11. Rodrigues, M., Ben-Zvi, A., Krachmer, A. & Sun, T.-T. Suprabasal expression of a 65-kDa keratin (No.3) in developing human corneal epithelium. Differentiation 34, 60–67 (1987).

    Article  CAS  Google Scholar 

  12. Chaloin-Dufau, C., Sun, T.-T. & Dhouailly, D. Appearance of the keratin pair K3/K12 during embryonic and adult corneal epithelial differentiation in the chick and in the rabbit. Cell Diff. Dev. 32, 97–108 (1990).

    Article  CAS  Google Scholar 

  13. McKusick, V.A. OMIM: On-line Mendelian Inheritance in Man.(Johns Hopkins University, Baltimore, 1997).

  14. Shearman, A.M. et al. The gene for Schnyder's crystalline corneal dystrophy maps to human chromosome 1p34.1-p36. Hum. Mol. Genet. 5, 1667–1672 (1996).

    Article  CAS  Google Scholar 

  15. Stone, E.M. et al. Three autosomal dominant corneal dystrophies map to chromosome 5q. Nature Genet. 6, 47–51 (1994).

    Article  CAS  Google Scholar 

  16. Small, K.W. et al. Mapping of Reis-Bucklers' corneal dystrophy to chromosome 5q. Am. J. Ophthal. 121, 384–390 (1996).

    Article  CAS  Google Scholar 

  17. Vance, J. et al. Linkage of a gene for macular corneal dystrophy to chromosome 16. Am. J. Hum. Genet. 58, 757–762 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Toma, N.M. et al. Linkage of congenital hereditary endothelial dystrophy to chromosome 20. Hum. Mol. Genet. 4, 2395–2398 (1995).

    Article  CAS  Google Scholar 

  19. Heon, E. et al. Linkage of posterior polymorphous corneal dystrophy to 20q11. Hum. Mol. Genet. 4, 485–488 (1995).

    Article  CAS  Google Scholar 

  20. Skretting, G. & Prydz, H. An amino acid exchange in exon I of the human lecithin:cholesterol acyltransferase (LCAT) gene is associated with fish eye disease. Biochem. Biophys. Res. Commun. 182, 583–587 (1992).

    Article  CAS  Google Scholar 

  21. Levy, E., Haltia, M. & Frangione, B. Amyloidosis due to a mutation of the gelsolin gene in an American family with lattice corneal dystrophy type II. N. Eng. J. Med. 325, 1780–1785 (1991).

    Article  Google Scholar 

  22. Munier, F.L. et al. Kerato-epithelin mutations in four 5q31-linked corneal dystrophies. Nature Genet. 15, 247–251 (1997).

    Article  CAS  Google Scholar 

  23. Tremblay, M. & Dube, I. Meesmann's corneal dystrophy: Ultrastructural features. Can. J. Opthalmol. 17, 24–28 (1982).

    CAS  Google Scholar 

  24. Ishida-Yamamoto, A. et al. Epidermolysis bullosa simplex (Dowling- Meara type) is a genetic disease characterized by an abnormal keratin filament network involving keratins K5 and K14J. J invest.Dermatol. 97, 959–968 (1991).

    Article  CAS  Google Scholar 

  25. Kao, W.W.-Y et al. Keratin 12 deficient mice have fragile corneal epithelia. Ophthalmol. Vis. Sci. 37, 2572–2584 (1996).

    CAS  Google Scholar 

  26. Klinge, E.M., Sylvestre, Y.R., Freedberg, I.M. & Blumenberg, M. Evolution of keratin genes: Different protein domains evolve by different pathways. J. Mol. Evol. 24, 319–329 (1987).

    Article  CAS  Google Scholar 

  27. Nishida, K. et al. A gene expression profile of human corneal epithelium and the isolation of human keratin 12 cDNA. Invest. Opthalmol. Vis. Sci. 37, 1800–1809 (1996).

    CAS  Google Scholar 

  28. Christiano, A.M. & Uitto, J. (1996) Molecular complexity of the cultaneous basement membrane zone. Revelations from the paradigm of epidermolysis bullosa. Exp. Dermatol. 5, 1–11.

    Article  CAS  Google Scholar 

  29. McLean, W.H. et al.Keratin-16 and keratin-17 mutations cause pachyonychia-congenita. Nature Genet. 9, 273–278 (1995).

    Article  CAS  Google Scholar 

  30. Kao, W.W.-Y Characterization and chromosomal localization of the cornea-specific murine keratin gene: Krt.12. J. Biol. Chem. 269, 24627–24636 (1994).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irvine, A., Corden, L., Swensson, O. et al. Mutations in cornea-specific keratin K3 or K12 genes cause Meesmann's corneal dystrophy. Nat Genet 16, 184–187 (1997). https://doi.org/10.1038/ng0697-184

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0697-184

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing