Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA

Abstract

We recently described a human marker chromosome containing a functional neo-centromere that binds anti-centromere antibodies, but is devoid of centromeric α-satellite repeats and derived from a hitherto non-centromeric region of chromosome 10q25. Chromosome walking using cloned single-copy DNA from this region enabled us to identify the antibody-binding domain of this centromere. Extensive restriction mapping indicates that this domain has an identical genomic organization to the corresponding normal chromosomal region, suggesting a mechanism for the origin of this centromere through the activation of a latent centromere that exists within 10q25.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Clarke, L. & Carbon, J. The structure and function of yeast centromeres. Annu. Rev. Genet. 19, 29–56 (1985).

    Article  CAS  Google Scholar 

  2. Steiner, N., Hahnenberger, K. & Clarke, L. Centromeres of the fission yeast Schizosaccharomyces pombe are highly variable genetic loci. Mol. Cell. Biol. 13, 4578–4587 (1993).

    Article  CAS  Google Scholar 

  3. Murphy, T.D. & Karpen, G.H. Localization of centromere function in a Drosophila minichromosome. Cell 82, 599–609 (1995).

    Article  CAS  Google Scholar 

  4. Wevrick, R. & Willard, H.F. Long-range organization of tandem arrays of alpha-satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. Proc. Natl. Acad. Sci. USA 86, 9394–9398 (1989).

    Article  CAS  Google Scholar 

  5. Wevrick, R. & Willard, H.F. Physical map of the centromeric region of human chromosome 7: relationship between two distinct alpha satellite arrays. Nucleic Acids Res. 19, 2295–2301 (1991).

    Article  CAS  Google Scholar 

  6. Trowell, H.E., Nagy, A., Vissel, B. & Choo, K.H.A. Long-range analyses of the centromeric regions of human chromosomes 13, 14 and 21: identification of a narrow domain containing two key centromeric DNA elements. Hum. Mol. Genet. 2, 1639–1649 (1993).

    Article  CAS  Google Scholar 

  7. Grady, D. et al. Highly conserved repetitive DNA sequences are present at human centromeres. Proc. Natl. Acad. Sci. USA 89, 1695–1699 (1992).

    Article  CAS  Google Scholar 

  8. Haaf, T., Warburton, P.E. & Willard, H.F. Integration of human α-satellite DNA into simian chromosomes: centromere protein binding and disruption of normal chromosome segregation. Cell 70, 681–696 (1992).

    Article  CAS  Google Scholar 

  9. Larin, Z., Fricker, M.D. & Tyler-Smith, C. De novo formation of several features of a centromere following introduction of a Y alphoid YAC into mammalian cells. Hum. Mol. Genet. 3, 689–695. (1994).

    Article  CAS  Google Scholar 

  10. Tyler-Smith, C. et al. Localization of DNA sequences required for human centromere function through an analysis of rearranged Y chromosomes. Nature Genet. 5, 368–375 (1993).

    Article  CAS  Google Scholar 

  11. Brown, K.E. et al. Dissecting the centromere of the human Y chromosome with cloned telomeric DNA. Hum. Mol. Genet. 3, 1227–1237 (1994).

    Article  CAS  Google Scholar 

  12. Farr, C. et al. Generation of a human X-derived minichromosome using telomere-associated chromosome fragmentation. EMBO J. 14, 5444–5454 (1995).

    Article  CAS  Google Scholar 

  13. Heller, R., Brown, K., Burgtorf, C. & Brown, W. Mini-chromosomes derived from the Y chromosome by telomere directed chromosome breakage. Proc. Natl. Acad. Sci. USA 93, 7125–7130 (1996).

    Article  CAS  Google Scholar 

  14. Sullivan, K.F., Hechenberger, M. & Masri, K. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol. 127, 581–592 (1994).

    Article  CAS  Google Scholar 

  15. Pluta, A.F., Cooke, C.A. & Earnshaw, W.C. Structure of the human centromere at metaphase. Trends Biochem. 15, 181–185 (1990).

    Article  CAS  Google Scholar 

  16. Earnshaw, W.C., Ratrie, H. & Stetten, G. Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma 98, 1–12 (1989).

    Article  CAS  Google Scholar 

  17. Bernat, R.L., Borisy, G.G., Rothfield, N.F. & Earnshaw, W.C. Injection of anticentromere antibodies in interphase disrupts events required for chromosome movement in mitosis. J. Cell. Biol. 111, 1519–1533 (1990).

    Article  CAS  Google Scholar 

  18. Tomkiel, J., Cooke, C.A., Saitoh, H., Bernat, R.L. & Earnshaw, W.C. CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase. J. Cell. Biol. 125, 531–545 (1994).

    Article  CAS  Google Scholar 

  19. Page, S.L., Earnshaw, W.C., Choo, K.H.A. & Shaffer, L.G. Further evidence that CENP-C is a necessary component of active centromeres: studies of a dic(X;15) with simultaneous immunofluorescence and FISH. Hum. Mol. Genet. 4, 289–294 (1995).

    Article  CAS  Google Scholar 

  20. Sullivan, B.A. & Schwartz, S. Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum. Mol. Genet. 4, 2189–2197 (1995).

    Article  CAS  Google Scholar 

  21. Kingwell, B. & Rattner, J. Mammalian kinetochore/centromere composition: A 50 kDa antigen is present in the mammalian kinetochore/centromere. Chromosoma 95, 403–407 (1987).

    Article  CAS  Google Scholar 

  22. Bischoff, F., Maier, G., Tilz, G. & Ponstingl, H. A 47-kDa human nuclear protein recognized by antikinetochore autoimmune sera is homologous with the protein encoded by RCC1, a gene implicated in onset of chromosome condensation. Proc. Natl. Acad. Sci USA 87, 8617–8621 (1990).

    Article  CAS  Google Scholar 

  23. Dasso, M. RCC1 in the cell cycle: the regulator of chromosome condensation takes on new roles. Trends Biochem. Sci. 18, 96–101 (1993).

    Article  CAS  Google Scholar 

  24. Earnshaw, W. & MacKay, A. Role of nonhistone proteins in the chromosomal events of mitosis. FASEB J. 8, 947–956 (1994).

    Article  CAS  Google Scholar 

  25. Pluta, A.F., Mackay, A.M., Ainsztein, A.M., Goldberg, I.G. & Earnshaw, W.C. The centromere: hub of chromosomal activities. Science 270, 1591–1594 (1995).

    Article  CAS  Google Scholar 

  26. Choo, K.H.A., The Centromere (Oxford University Press, Oxford, New York, Toyko, in the press).

  27. Yang, C., Tomkiel, J., Saitoh, H., Johnson, D. & Earnshaw, W. Identification of overlapping DNA-binding and centromere-targeting domains in the human kinetochore protein CENP-C. Mol. Cell. Biol. 16, 3576–3586 (1996).

    Article  CAS  Google Scholar 

  28. Voullaire, L.E., Slater, H.R., Petrovic, V. & Choo, K.H.A. A functional marker centromere with no detectable alpha-satellite, satellite Hi, or CENP-B protein: activation of a latent centromere. Am. J. Hum. Genet. 52, 1153–1163 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Moir, D.T. et al. Toward a physical map of human chromosome 10: isolation of 183 YACs representing 80 loci and regional assignment of 94 YACs by fluorescence in situ hybridization. Genomics 22, 1–12 (1994).

    Article  CAS  Google Scholar 

  30. Zheng, C. et al. Development of 124 sequence-tagged sites and cytogenetic localization of 217 cosmidsfor human chromosome 10. Genomics 22, 55–67 (1994).

    Article  CAS  Google Scholar 

  31. Moschonas, N.K., Spurr, N.K. & Mao, J. Report of the first international workshop on human chromosome 10 mapping 1995. Cytogenet. Cell Genet. 72, 99–112 (1996).

    Article  CAS  Google Scholar 

  32. Haaf, T. & Ward, D.C. Structural analysis of α-satellite DNA and centromere proteins using extended chromatin and chromosomes. Hum. Mol. Genet. 3, 697–709 (1994).

    Article  CAS  Google Scholar 

  33. Nelson, M. & McClelland, M. Site-specific methylation: effect on DNA modification methyltransferases and restriction endonucleases. Nucleic Acids Res. 19, 2045–2071 (1991).

    Article  CAS  Google Scholar 

  34. Wilson, R.R. et al. 2.2. Mb of contiguous nudeotide sequence from chromosome III of C.elegans. Nature 368, 32–38 (1994).

    Article  CAS  Google Scholar 

  35. Stoler, S., Keith, K.C., Curnick, K.E. & Fitzgerald-Hayes, M. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Develop. 9, 573–586 (1995).

    Article  CAS  Google Scholar 

  36. Palmer, D.K. & Margolis, R.L. Kinetochore components recognized by human autoantibodies are present on mononucleosomes. Mol. Cell. Biol. 5, 173–186 (1985).

    Article  CAS  Google Scholar 

  37. Palmer, D.K., O'Day, K., Wener, M.H., Andrews, B.S. & Margolis, R.L. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histonesJ. Cell. Biol. 104, 805–815 (1987).

    Article  CAS  Google Scholar 

  38. Brown, M.T., Goetsch, L. & Hartwell, L.H. MIF2 is required for mitotic spindle integrity during anaphase spindle elongation in xSaccharomyces cerevisiae. J. Cell. Biol. 123, 387–403 (1993).

    Article  CAS  Google Scholar 

  39. Brown, M. Sequence similarities between the yeast chromosome segregation protein Mif2 and the mammalian centromere protein CENP-C. Gene 160, 111–116 (1995).

    Article  CAS  Google Scholar 

  40. Meluh, P. & Koshland, D. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol. Biol. Cell 6, 793–807 (1995).

    Article  CAS  Google Scholar 

  41. Heartlein, M.W., Knoll, J.H.M. & Latt, S.A. Chromosome instability associated with human alphoid DNAtransfected into the Chinese hamster genome. Mol. Cell. Biol. 8, 3611–3618 (1988).

    Article  CAS  Google Scholar 

  42. Harrington, J.J., Van Bokkelen, G., Mays, R.W., Gustashaw, K. & Willard, H.F. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nature Genet. 15, 345–355 (1997).

    Article  CAS  Google Scholar 

  43. Verma, R.A. & Luke, S. Variations in alphoid DNA sequences escape detection of aneuploidy at interphase by FISH technique. Genomics 14, 113–116 (1992).

    Article  CAS  Google Scholar 

  44. Brown, W. & Tyler-Smith, C. Centromere activation. Trends Genet. 11, 337–339 (1995).

    Article  CAS  Google Scholar 

  45. Steiner, N. & Clarke, L. A novel epigenetic effect can alter centromere function in fission yeast. Cell 79, 865–874 (1994).

    Article  CAS  Google Scholar 

  46. Dutrillaux, B. Chromosomal evolution in primates: tentative phylogeny from microcebus murinus (Prosimian) to man. Hum. Genet. 48, 251–314 (1979).

    Article  CAS  Google Scholar 

  47. Searle, A.G. et al. Chromosome maps of man and mouse. IV. Anal. Hum. Genet. 53, 89–140 (1989).

    Article  CAS  Google Scholar 

  48. Aleixandre, C. et al. p82H identifies sequences at every human centromere. Hum. Genet. 77, 46–50 (1987).

    Article  CAS  Google Scholar 

  49. Baldini, A., Ried, T., Shridhar, V. & Ward, D.C. Alpha satellite DNA sequences at the non-centromeric locations 2q21 and 9q13. Cytogenet. Cell Genet. 58, 1868–1874 (1991).

    Article  Google Scholar 

  50. Baldini, A. et al. An alphoid DNA sequence conserved in all human and great ape chromosomes: evidence for ancient centromeric sequences at human chromosomal regions 2q21 and 9q13. Hum. Genet. 90, 577–583 (1993).

    Article  CAS  Google Scholar 

  51. Callen, D.F., Eyre, H., Yip, M., Freemantle, J. & Haan, E.A. Molecular cytogenetic and clinical studies of 42 patients with marker chromosomes. Am. J. Med. Genet. 43, 709–715 (1992).

    Article  CAS  Google Scholar 

  52. Crolla, J.A., Dennis, N.R. & Jacobs, P.A. A non-isotopic in situ hybridization study of the chromosomal origin of 15 supernumerary marker chromosomes in man. J. Med. Genet. 29, 699–703 (1992).

    Article  CAS  Google Scholar 

  53. Rauch, A. et al. A study of ten small supernumerary (marker) chromosomes identified by fluorescence in situ hybridization (FISH). Cell Genet. 42, 84–90 (1992).

    CAS  Google Scholar 

  54. Magnani, I. et al. Identification of the chromosome 14 origin of a C-negative marker associated with a 14q32 deletion by chromosome painting. Cell Genet. 43, 180–185 (1993).

    CAS  Google Scholar 

  55. Blennow, E. et al. Tetrasomy 15q: two marker chromosomes with no detectable alpha-satellite DNA. Am. J. Hum. Genet. 54, 877–883 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ohashi, H. et al. A stable acentric marker chromosome: possible existence of an intercalary ancient centromere at distal 8p. Am. J. Hum. Genet. 55, 1202–1208 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Brownstein, B. et al. Isolation of single-copy human genes from a library of yeast artificial chromosome clones. Science 244, 1348–1351 (1989).

    Article  CAS  Google Scholar 

  58. Albertsen, H., Abderrahim, H., Cann, H.J.D., Paslier, D.L. & Cohen, D. Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents. Proc. Natl. Acad. Sci. USA. 87, 4256–4260 (1990).

    Article  CAS  Google Scholar 

  59. Archidiacono, N., Antonacci, R., Forabosco, A. & Rocchi, M. Preparation of human chromosomal painting probes from somatic cell hybrids. In In Situ Hybridization Protocols, (ed. K.H.A. Choo) 1–14 (Humana Press, Totowa, New Jersey, 1994).

    Google Scholar 

  60. Moroi, Y Hartman, A.L., Nakane, P.K & Tan, E.M. Distribution of kinetochore (centromere) antigen in mammalian cell nuclei. Cell Biol. 90, 254–259 (1981).

    Article  CAS  Google Scholar 

  61. Fritzler, M.J. & Kinsella, T.D. The CREST syndrome: a distinct serologic entity with anticentromere antibodies. Am. J. Med. 69, 520–526 (1980).

    Article  CAS  Google Scholar 

  62. Brenner, S., Pepper, D., Berns, M.W., Tan, E. & Brinkley, B.R. Kinetochore structure, duplication and distribution in mammalian cells: analysis by human autoantibodies fromscleroderma patients. Cell. Biol. 91, 95–102 (1981).

    Article  CAS  Google Scholar 

  63. Jeppensen, P., Mitchell, A., Turner, B. & Perry, P. Antibodies to defined histone epitopes reveal variations in chromatin conformation and underacetylation of centric heterochromatin in human metaphase chromosomes. Chromosoma 101, 322–332 (1992).

    Article  Google Scholar 

  64. Earnshaw, W.C. & Migeon, B.R. Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma 92, 290–296(1985).

    Article  CAS  Google Scholar 

  65. Jeppensen, P. & Turner, B.M. The inactive X chromosome in female mammals is dinstinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74, 281–289 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Andy Choo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sart, D., Cancilla, M., Earle, E. et al. A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat Genet 16, 144–153 (1997). https://doi.org/10.1038/ng0697-144

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0697-144

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing