Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sex reversal by loss of the C–terminal transactivation domain of human SOX9

Abstract

Haploinsufficiency for SOX9 has recently been identified as the cause for both campomelic dysplasia (CD), a human skeletal malformation syndrome, and the associated autosomal XY sex reversal1,2. SOX9 contains a putative DNA-binding motif known as the high-mobility group (HMG) domain characterizing a whole class of transcription factors3. We show in cell transfection experiments that SOX9 can trans-activate transcription from a reporter plasmid through the motif AACAAAG, a sequence recognized by other HMG domain transcription factors3. By fusing all or part of SOX9 to the DNA-binding domain of yeast GAL4, the transactivating function was mapped to a transcription activation (TA) domain at the C terminus of SOX9. This non-acidic TA domain is evolutionary conserved and rich in proline, glutamine and serine. With one exception4, all SOX9 nonsense and frame shift mutations described so far in CD/sex reversal patients1,2,4 lead to truncation of the TA domain, suggesting that impairment of gonadal and skeletal development in these cases results, at least in part, from loss of transactivation of genes downstream of SOX9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wagner, T. et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79, 1111–1120 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Foster, J.W. et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. 372, 525–530 (1994).

  3. Grosschedl, R., Giese, K. & Pagel, J. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures.Trends Genet. 10, 94–100 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Kwok, C. et al. Mutations in SOX9, the gene responsible for campomelic dysplasia and autosomal sex reversal. Am. J. Hum. Genet. 57, 1028–1036 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. van de Wetering, M., Oosterwegel, M., Dooijes, D. & Clevers, H. Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J. 10, 123–132 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harley, V.R. et al. DNA binding activity of recombinant SRY from normal mates and XY females. Science 255, 453–456 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. van de Wetering, M., Oosterwegel, M., van Norren, K. & Clevers, H. Sox-4, an Sry-like HMG box protein, is a transcriptional activator in lymphocytes. EMBO J. 12, 3847–3854 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wright, E. et al. The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nature Genet 9, 15–20 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Tjian, R. & Maniatis, T. Transcriptional activation: a complex puzzle with few easy pieces. Cell 77, 5–8 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Chi, T., Lieberman, P., Ellwood, K. & Carey, M. A general mechanism for transcriptional synergy by eukaryotic activators. Nature 377, 254–257 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Gerber, H.-P. et al .Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 263, 808–811 (1994).

    CAS  PubMed  Google Scholar 

  12. Bours, V. et al .The oncoprotein Bcl-3 directly transactivates through κB motifs via association with DNA-binding p50B homodimers. Cell 72, 729–739 (1993).

    CAS  PubMed  Google Scholar 

  13. Glaser, T. et al. PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nature Genet. 7, 463–471 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Truant, R., Xiao, H., Ingles, C.J. & Greenblatt, J. Direct interaction between the transcriptional activation domain of human p53 and the TATA box-binding protein. J. Biol. Chem. 268, 2284–2287 (1993).

    CAS  PubMed  Google Scholar 

  15. Clark, H.M. et al .Mutations in the coding region of c-myc in AIDS-associated and other aggressive lymphomas. Cancer Res. 54, 3383–3386 (1994).

    CAS  PubMed  Google Scholar 

  16. Baniahmad, A., Köhne, A.C. & Renkawitz, R. A transferable silencing domain is present in the thyroid hormone receptor, in the v-erbA oncogene product and in the retinoic acid receptor. EMBO J. 11, 1015–1023 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmitz, M.L., dos Santos Silva, M.A. & Baeuerle, P.A. Transactivation domain 2 (TA2) of p65NF-κB. J. Biol. Chem. 270, 15576–15584 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Giese, K., Amsterdam, A. & Grosschedl, R. DNA-binding properties of the HMG domain of the lymphoid-specific transcriptional regulator LEF-1. Genes Dev. 5, 2567–2578 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Ferrari, S. et al. SRY, like HMG1, recognizes sharp angles in DNA. EMBO J. 11, 4497–4506 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wigler, M., Pellicer, A., Silverstein, S. & Axel, R. Biochemical transfer of single-copy eucaryotic genes using total cellar DNA as donor. Cell 14, 725–731 (1978).

    Article  CAS  PubMed  Google Scholar 

  21. Schreiber, E., Matthias, P., Mülter, M.M. & Schaffner, W. Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucl. Acids Res. 17, 6419 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Südbeck, P., Schmitz, M., Baeuerle, P. et al. Sex reversal by loss of the C–terminal transactivation domain of human SOX9. Nat Genet 13, 230–232 (1996). https://doi.org/10.1038/ng0696-230

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0696-230

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing