Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A synaptobrevin–like gene in the Xq28 pseudoautosomal region undergoes X inactivation

Abstract

The X and Y chromosomes that maintain human dimorphism are thought to have descended from a single progenitor, with the Y chromosome becoming largely depleted of genes1. A number of genes, however, retain copies on both X and Y chromosomes and escape the inactivation that affects most X-linked genes in somatic cells2. Many of those genes are present in two pseudoautosomal regions (PARs) at the termini of the short (p)3 and long (q)4,5 arms of the sex chromosomes. For both PARs, pairing facilitates the .exchange of information, ensuring the homogeni-sation of X and Y chromosomal material in these regions6–10. We report here a strikingly different regulation of expression of a gene in Xq PAR. Unlike all Xp PAR genes studied so far, a synaptobrevin-like gene, tentatively named SYBL1, undergoes X inactivation. In addition, it is also inactive on the Y chromosome, thereby maintaining dosage compensation in an unprecedented way.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Graves, J.A.M. The origin and the function of the mammalian Y chromosome and Y-borne genes-an evolving understanding. BioEssays 17, 311–321 (1995).

    Article  CAS  Google Scholar 

  2. Lyon, M.F., The William allan Memorial Award address: X chromosome inactivation and the location and expression of X linked genes. Am J. Hum. Genet. 42, 8–16 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rappold, G.A. The pseudoautosomal region of the human sex chromosomes. Hum. Genet. 92, 315–324 (1993).

    Article  CAS  Google Scholar 

  4. Freije, D. & Schlessinger, D. A 1.6 Mb contig of Yeast Artificial Chromosome around the human Factor VIII reveals three regions homologous to probes for DXS115 and two for the DXYS64 locus. Am. J. Hum. Genet. 51, 66–80 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Freije, D., Helms, C., Watson, M.S. & Donis-Keller, H. Identification of a second pseudoautosomal region near the Xq and Yq telomeres. Science 258, 1784–1787 (1992).

    Article  CAS  Google Scholar 

  6. Rouyer, F. et al. A gradient of sex linkage in the pseudoautosomal region of the human sex chromosomes. Nature 319, 291–295 (1987).

    Article  Google Scholar 

  7. Chandley, A.C., Goetz, P., Hargreave, T.B., Joseph, A.M. & Speed, R.M. On the nature and the extent of XY pairing at meiotic prophase in man. Cytogenet Cell. Genet. 38, 241 (1984).

    Article  CAS  Google Scholar 

  8. Mohandas, T.K. et al. Role of the pseudoautosomal region in sex chromosome pairing during male meiosis: meiotic studies in a man with a deletion of distal Xp. Am. J. Hum. Genet. 51, 526–533 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kvaloy, K., Galvagni, F. & Brown, W.R.A. The sequence organization of the long arm pseudoautosomal region of the human sex chromosomes. Hum. Mol. Genet. 3, 771–778 (1994).

    Article  CAS  Google Scholar 

  10. Li, L. & Hamer, D.H. Recombination and allelic association in the Xq/Yq homology region. Hum. Mol. Genet. 4, 2013–2016 (1995).

    Article  CAS  Google Scholar 

  11. Kozak, M. Comparison of initiation of protein synthesis in procaryotes, eucaryotes and organelles. Microbiol. Rev. 47 1–45 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cooke, H.J., Brown, W.A.R. & Rappold, G.A. Closely related sequences on human X and Y chromosomes outside the pairing region. Nature 311, 259–261 (1984).

    Article  CAS  Google Scholar 

  13. Palmieri, G. et al. YAC contig organization and CpG analysis in Xq28. Genomics 24, 149–158 (1994).

    Article  CAS  Google Scholar 

  14. Kutay, U., Ahnert-Hilger, G., Hartmann, E., Wiedenmann, B. & Rapoport, T.A. Transport route for synaptobrevin via a novel pathway of insertion into the endoplasmic reticulum membrane. EMBO J. 14, 217–223 (1995).

    Article  CAS  Google Scholar 

  15. Protopopov, V., Govindan, B., Novick, P. & Gerst, J.E. Homologs of the synaptobrevin/vamp family of synaptic vesicle proteins function on the late secretory pathway in S. cerevisiae. Cell 74, 855–861 (1995).

    Article  Google Scholar 

  16. Brown, C.J. et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349, 38–44 (1991).

    Article  CAS  Google Scholar 

  17. Goodfellow, P.J., Darling, S.M., Thomas, N.S. & Goodfellow, P.N. A pseudoautosomal gene in man. Science 234, 740–743 (1986).

    Article  CAS  Google Scholar 

  18. Brown, C.J., Flenniken, A.M., Williams, B.R.G. & Willard, H.F. X chromosome inactivation of the human TIMP gene. Nucl. Acids Res. 18, 4191–4195 (1990).

    Article  CAS  Google Scholar 

  19. Bickmore, W.A. & Cooke, H.J. Evolution of homologous sequences on the X and Y chromosomes, outside of the meiotic pairing segment. Nucl. Acids Res. 15, 6261–6271 (1987).

    Article  CAS  Google Scholar 

  20. Incerti, B. et al. Kallman syndrome gene on the X and Y chromosomes: implications for evolutionary divergences of human sex chromosomes. Nature Genet. 2, 311–314 (1992).

    Article  CAS  Google Scholar 

  21. Gottschling, D.E., Aparicio, O.M., Billington, B.L. & Zakian, V.A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751–762 (1990).

    Article  CAS  Google Scholar 

  22. Henikoff, S. Position effect variegation after 60 years. Trends Genet. 6, 422–426 (1990).

    Article  CAS  Google Scholar 

  23. Hendrich, B.D. & Willard, H.F. Epigenetic regulation of gene expression:the effect of altered chromatin structure from yeast to mammals. Hum. Mol. Genet 4, 1765–1777 (1995).

    Article  CAS  Google Scholar 

  24. Cattanach, B.M. Position effect variegation in the mouse. Genet. Res. 23, 291–306 (1974).

    Article  CAS  Google Scholar 

  25. Kermouni, A. et al. The IL-9 receptor gene (IL-9R): Genomic structure, chromosomal localization in the pseudoautosomal region of the long arm of the sex chromosomes, and identification of IL-9R pseudogenes at 9qter, 10pter, 16pterand 18 pter. Genomics 29, 371–382 (1995).

    Article  CAS  Google Scholar 

  26. Hamer, D.H., Hu, S., Magnuson, V.L., Hu, N. & Pattatucci, A.M. A linkage between DMA markers on the X chromosome and male sexual orientation. Science 261, 321–327 (1992).

    Article  Google Scholar 

  27. Grausz, J.D. & Auffray, C. Strategies in cDNA programs. Genomics 17, 530–532 (1993).

    Article  CAS  Google Scholar 

  28. D'Esposito, M. et al. PCR-based immortalization and screening of hierarchical pools of cDNAs. Nucl. Acids. Res. 22, 4806–4809 (1994).

    Article  CAS  Google Scholar 

  29. Skowronski, J., Fanning, T.G. & Singer, M.F., Unit-length Line-1 transcripts in human teratocarcinoma cells. Mol. Cell. Biol. 8, 1385–1397 (1988).

    Article  CAS  Google Scholar 

  30. Melton, DA. et al. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing bacteriophage SP6 promoter. Nucl. Acids Res. 12, 7035–7056 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele D'Urso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Esposito, M., Ciccodicola, A., Gianfrancesco, F. et al. A synaptobrevin–like gene in the Xq28 pseudoautosomal region undergoes X inactivation. Nat Genet 13, 227–229 (1996). https://doi.org/10.1038/ng0696-227

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0696-227

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing