Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

p53 modulation of TFIIH–associated nucleotide excision repair activity

Abstract

p53 has pleiotropic functions including control of genomic plasticity and integrity. Here we report that p53 can bind to several transcription factor IIH–associated factors, including transcription–repair factors, XPD (Rad3) and XPB, as well as CSB involved in strand–specific DNA repair, via its C–terminal domain. We also found that wild–type, but not Arg273His mutant p53 inhibits XPD (Rad3) and XPB DNA helicase activities. Moreover, repair of UV–induced dimers is slower in Li–Fraumeni syndrome cells (heterozygote p53 mutant) than in normal human cells. Our findings indicate that p53 may play a direct role in modulating nucleotide excision repair pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cleaver, J.E. Defective repair replication of DNA in xeroderma pigmentosum. Nature 218, 652–656 (1968).

    Article  CAS  Google Scholar 

  2. Satoh, M.S., Jones, C.J., Wood, R.D. & Lindahl, T. DNA excision-repair defect of xeroderma pigmentosum prevents removal of a class of oxygen free radical-induced base lesions. Proc. natn. Acad. Sci U.S.A. 90, 6335–6339 (1993).

    Article  CAS  Google Scholar 

  3. Cleaver, J.E. & Kraemer, K.H. The Metabolic Basis of Inherited Disease 7th edn (McGraw-Hill, New York, 1994).

    Google Scholar 

  4. Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233–1238 (1990).

    Article  CAS  Google Scholar 

  5. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  Google Scholar 

  6. Livingstone, L.R. et al. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70, 923–935 (1992).

    Article  CAS  Google Scholar 

  7. Yin, Y., Tainsky, M.A., Bischoff, F.Z., Strong, L.C. & Wahl, G.M. Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70, 937–948 (1992).

    Article  CAS  Google Scholar 

  8. Greenblatt, M.S., Bennett, W.P., Hollstein, M. & Harris, C.C. Mutations in the p53 tumour suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54, 4855–4878 (1994).

    CAS  Google Scholar 

  9. Kastan, M.B. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in Ataxia - Telangiectasia. Cell 71, 587–597 (1992).

    Article  CAS  Google Scholar 

  10. Lu, X. & Lane, D.P. Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes? Cell 75, 765–778 (1993).

    Article  CAS  Google Scholar 

  11. EI-Deiry, W.S. et al. WAF1, a potential mediator of p53 tumour suppression. Cell 75, 817–825 (1993).

    Article  Google Scholar 

  12. Zhan, Q. et al. The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Molec. cell Biol. 14, 2361–2371 (1994).

    Article  CAS  Google Scholar 

  13. Okamoto, K. & Beach, D. Cyclin G is atranscriptional target of the p53 tumour suppressor protein. EMBO J 13, 4816–4822 (1994).

    Article  CAS  Google Scholar 

  14. Waga, S., Hannon, G.J., Beach, D. & Stillman, B. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369, 574–578 (1994).

    Article  CAS  Google Scholar 

  15. Yonish-Rouach, E. et al. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352, 345–347 (1991).

    Article  CAS  Google Scholar 

  16. Wang, X.W. et al. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc. natn.Acad.Sci U.S.A. 91, 2230–2234 (1994).

    Article  CAS  Google Scholar 

  17. Schaeffer, L. et al. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260, 58–63 (1993).

    Article  CAS  Google Scholar 

  18. Schaeffer, L. et al. The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. EMBO J. 13, 2388–2392 (1994).

    Article  CAS  Google Scholar 

  19. Fischer, L. et al. Cloning of the 62-kilodalton component of basic transcription factor BTF2. Science 257, 1392–1395 (1992).

    Article  CAS  Google Scholar 

  20. Humbert, S. et al. p44 and p34 subunits of the BFT2/TFIIH transcription factor have homologies with SSL1, a yeast protein involved in DNA repair. EMBO J. 13, 2393–2398 (1994).

    Article  CAS  Google Scholar 

  21. Roy, R. et al. The DNA-dependent ATPase activity associated with the class II basic transcription factor BTF2/TFIIH. J biol. Chem 269, 9826–9832 (1994).

    CAS  PubMed  Google Scholar 

  22. Goodrich, J.A. & Tjian, R. Transcription factors ME and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell 77, 145–156 (1994).

    Article  CAS  Google Scholar 

  23. Drapkin, R. et al. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature 368, 769–772 (1994).

    Article  CAS  Google Scholar 

  24. Weeda, G. et al. A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne's syndrome. Cell 62, 777–791 (1990).

    Article  CAS  Google Scholar 

  25. Flejter, W.L., McDaniel, L.D., Johns, D., Friedberg, E.G. & Schultz, R.A. Correction of xeroderma pigmentosum complementation group D mutant cell phenotypes by chromosome and gene transfer: involvement of the human ERCC2 DNA repair gene. Proc. natn.Acad.Sci U.S.A. 89, 261–265 (1992).

    Article  CAS  Google Scholar 

  26. Venema, J., Mullenders, L.H., Natarajan, A.T., Van Zeeland, A.A. & Mayne, L.V. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc. natn. Acad. Sci U.S.A. 87, 4707–4711 (1990).

    Article  CAS  Google Scholar 

  27. Vermeulen, W., Stefanini, M., Giliani, S., Hoeijmakers, J.H. & Bootsma, D. Xeroderma pigmentosum complementation group H falls intoo complementation group D. Mutat. Res. 255, 201–208 (1991).

    Article  CAS  Google Scholar 

  28. Troelstra, C. et al. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 71, 939–953 (1992).

    Article  CAS  Google Scholar 

  29. Ma, L. et al. Mutational analysis of ERCC3, which is involved in DNA repair and transcription initiation: identification of domains essential for the DNA repair function. Molec. cell. Biol. 14, 4126–4134 (1994).

    Article  CAS  Google Scholar 

  30. Bartek, J., Vojtësek, B. & Lane, D.P. Diversity of human p53 mutants revealed by complex formation to SV40 T antigen. Eur. J. Cancer. 29A, 101–107 (1992).

    CAS  PubMed  Google Scholar 

  31. Huibregtse, J.M., Scheffner, M. & Howley, P.M. Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Molec. Cell. Biol. 13, 775–784 (1993).

    Article  CAS  Google Scholar 

  32. Xiao, H. et al. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Molec. cell. Biol. 14, 7013–7024 (1994).

    Article  CAS  Google Scholar 

  33. Seto, E. et al. Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc. natn. Acad. Sci. U.S.A. 89, 12028–12032 (1992).

    Article  CAS  Google Scholar 

  34. Thut, C.J., Chen, J.-L., Klemm, R. & Tjian, R. . p53 transcriptional activation mediated by coactivators TAFH40 and TAFH60. Science 267, 100–104 (1995).

    Article  CAS  Google Scholar 

  35. Chou, P.Y., chou, P.Y & Fasman, G.D. Prediction of protein conformation. Biochemistry 13, 222–245 (1974).

    Article  CAS  Google Scholar 

  36. Garnier, J., Osguthorpe, D.J. & Robson, B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. molec. Biol. 120, 97–120 (1978).

    Article  CAS  Google Scholar 

  37. Braithwaite, A.W. et al. Mouse p53 inhibits SV40 origin — dependent DNA replication. Nature 329, 458–460 (1987).

    Article  CAS  Google Scholar 

  38. Wang, E.H., Friedman, P.N. & Prives, C. The murine p53 protein blocks replication of SV40 DNA in vitro by inhibiting the initiation functions of SV40 large T antigen. Cell. 57, 379–392 (1989).

    Article  CAS  Google Scholar 

  39. Oberosler, P., Hloch, P., Ramsperger, U. & Stahl, H. p53-catalyzed annealing of complementary single-stranded nucleic acids. EMBO J. 12, 2389–2396 (1993).

    Article  CAS  Google Scholar 

  40. Bakalkin, G. et al. p53 binds single-stranded DNA ends and catalyzes DNA renaturation and strand transfer. Proc. natn. Acad. Sci. U.S.A. 91, 413–417 (1994).

    Article  CAS  Google Scholar 

  41. Evans, M.K. et al. Gene-specific DNA repair in xeroderma pigmentosum complementation groups A, C, D, and F. Relation to cellular survival and clinical features. J. biol. Chem. 268, 4839–4847 (1993).

    CAS  PubMed  Google Scholar 

  42. Dittmer, D. et al. Gain of function mutations in p53. Nature Genet. 4, 42–46 (1993).

    Article  CAS  Google Scholar 

  43. Hodgman, T.C. A new superfamily of replicative proteins. Nature 333, 22–23 (1988).

    Article  CAS  Google Scholar 

  44. Sakurai, T., Suzuki, M., Sawazaki, T., Ishii, S. & Yoshida, S. Anti-oncogene product p53 binds DNA helicase. Exp.Cell Res. 215, 57–62 (1994).

    Article  CAS  Google Scholar 

  45. Hupp, T.R., Meek, D.W., Midgley, C.A. & Lane, D.P. Regulation of the specific DNA binding function of p53. Cell 71, 875–886 (1992).

    Article  CAS  Google Scholar 

  46. Hupp, T.R. & Lane, D.P. Allosteric activation of latent p53 tetramers. Curr.Biol. 4, 865–875 (1995).

    Article  Google Scholar 

  47. Kulesz-Martin, M.F., Lisafeld, B., Huang, H., Kisiel, N.D. & Lee, L. Endogenous p53 protein generated from wild-type alternatively spliced p53 RNA in mouse epidermal cells. Molec. cell. Biol. 14, 1698–1708 (1994).

    Article  CAS  Google Scholar 

  48. Wu, L., Bayle, J.H., Elenbaas, B., Pavletich, N.P. & Levine, A.J. Alternatively spliced forms in the carboxy-terminal domain of the p53 protein regulate its ability to promote annealing of complementary single strands of nucleic acids. Molec. cell. Biol. 15, 497–504 (1995).

    Article  CAS  Google Scholar 

  49. Stahl, H., Droge, P. & Knippers, R. DNA helicase activity of SV40 large tumour antigen. EMBO J. 5, 1939–1944 (1986).

    Article  CAS  Google Scholar 

  50. Smith, M.L., Chen, I.T., Zhan, Q., O'Connor, P.M. & Fornace, A.J. Jr. Involvement of the p53 tumour suppressor in repair of UV-type DNA damage. Oncogene (In the press) (1995).

    Google Scholar 

  51. Li, L., Elledge, S.J., Peterson, C.A., Bales, E.S. & Legerski, R.J. Specific association between the human DNA repair proteins XPA and ERCC1. Proc.natn. Acad. Sci. U.S.A. 91, 5012–5016 (1994).

    Article  CAS  Google Scholar 

  52. McWhir, J., Selfridge, J., Harrison, D.J., Squires, S. & Melton, D.W. Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Nature Genet. 5, 217–224 (1993).

    Article  CAS  Google Scholar 

  53. Wilcock, D. & Lane, D.P. Localization of p53, retinoblastoma and host replication proteins at sites of viral replication in herpes-infected cells. Nature 349, 429–431 (1991).

    Article  CAS  Google Scholar 

  54. Dutta, A., Ruppert, J.M., Aster, J.C. & Winchester, E. Inhibition of DNA replication factor RPA by p53. Nature 365, 79–82 (1993).

    Article  CAS  Google Scholar 

  55. Amundson, S.A., Xia, F., Wolfson, K. & Liber, H.L. Different cytoxic and mutagenic responses induced by X-rays in two human lymphoblastoid cell lines derived from a single donor. Mut. Res. 286, 233–241 (1993).

    Article  CAS  Google Scholar 

  56. Little, J.B., Nagasawa, H., Keng, P.C., Yu, Y. & Li, C.-Y. Absence of radiation-induced G1 arrest in two closely related human lymphoblast cell lines that differ in p53 status. J. biol. Chem. 270, 1–5 (1995).

    Article  Google Scholar 

  57. Kawashima, K., Mihara, K., Usuki, H., Shimizu, N. & Namba, M. Transfected mutant p53 gene increases X-ray-induced cell killing and mutation in human fibroblasts immortalized with 4-nitroquinoline 1-oxide but does not induce neoplastic transformation of the cells. Int. J. Cancer 61, 76–79 (1995).

    Article  CAS  Google Scholar 

  58. Ruppert, J.M. & Stillman, B. Analysis of a protein-binding domain of p53. Molec. cell. Biol. 13, 3811–3820 (1993).

    Article  CAS  Google Scholar 

  59. Naegeli, H., Bardwell, L. & Friedberg, E.G. The DNA helicase and adenosine triphosphatase activities of yeast Rad3 protein are inhibited by DNA damage. A potential mechanism for damage-specific recognition. J. biol.Chem 267, 392–398 (1992).

    CAS  PubMed  Google Scholar 

  60. Srivastava, S., Zou, Z.Q., Pirollo, K., Blattner, W. & Chang, E.H. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature 348, 747–749 (1990).

    Article  CAS  Google Scholar 

  61. Bohr, V.A. & Okumoto, D.S. Analysis of DNA repair in defined genomic sequences. DNA Repair, A Manual of Research Procedures. (eds Hanawalt, P.C. & Friedberg, E.G.) 347–366 (Marcel Dekker, New York, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Yeh, H., Schaeffer, L. et al. p53 modulation of TFIIH–associated nucleotide excision repair activity. Nat Genet 10, 188–195 (1995). https://doi.org/10.1038/ng0695-188

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0695-188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing