Article | Published:

Allelic loss of chromosome 1p36 in neuroblastoma is of preferential maternal origin and correlates with N–myc amplification

Nature Geneticsvolume 4pages187190 (1993) | Download Citation

Subjects

  • A Correction to this article was published on 01 August 1993

Abstract

Neuroblastomas frequently have deletions of chromosome 1 p and amplification of the N–myc oncogene. We analysed 53 neuroblastomas for the N–myc copy number, loss of heterozygosity (LOH) of chromosome 1 p36 and the parental origin of the lost alleles. Allelic loss of 1p36 was found in 15 tumours. All N–myc amplified tumours belonged to this subset. In 13/15 tumours with LOH of 1 p36 the lost allele was of maternal origin. This non–random distribution implies that the two alleles of the putative neuroblastoma suppressor gene on chromosome 1p36 are functionally different, depending on their parental origin. This is the first evidence as far as we know for genomic imprinting on chromosome 1p.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Brodeur, G.M. et al. Neuroblastoma; effect of genetic factors on prognosis and treatment. Cancer 70 Supplement, 1685–1694 (1992).

  2. 2

    Fong, C.T. et al. Loss of heterozygosity for chromosome 1 or 14 defines a subset of advanced neuroblastomas. Cancer Res. 52, 1780–1785 (1992).

  3. 3

    Weith, A. et al. Neuroblastoma consensus deletion maps to 1p36.1-2. Genes. Chromosom. Cancer 1, 159–166 (1989).

  4. 4

    Devilee, P. et al. Frequent somatic imbalance of marker alleles for chromosome 1 in human primary breast carcinoma. Cancer Res. 51, 1020–1025 (1991).

  5. 5

    Leister, I. et al. Human colorectal cancer: high frequency of deletions at chromosome 1p35. Cancer Res. 50, 7232–7235 (1990).

  6. 6

    Dracopoli, N.C. et al. Loss of alleles from the distal short arm of chromosome 1 occurs late in melanoma tumour progression. Proc. natn. Acad. Sci. U.S.A. 88, 4614–4618 (1989).

  7. 7

    Moley, J.F. et al. Consistent association of 1p loss of heterozygosity with pheochromocytomas from patients with Multiple Endocrine Neoplasia type 2 syndromes. Cancer Res. 52, 770–774 (1992).

  8. 8

    Mannens, M.M.A.M. et al. Molecular nature of genetic changes resulting in loss of heterozygosity of chromosome 11 in Wilms' tumours. Hum. Genet. 81, 41–48 (1988).

  9. 9

    Schroeder, W.T. et al. Non-random loss of maternal chromosome 11 alleles in Wilms' tumours. Am. J. hum. Genet. 40, 413–420 (1987).

  10. 10

    Pal, N. et al. Preferential loss of maternal alleles in sporadic Wilms' tumour. Oncogene 5, 1665–1668 (1990).

  11. 11

    Scrable, H. et al. A model for embryonal rhabdomyosarcoma tumorigenesis that involves genomic imprinting. Proc. natn. Acad. Sci. U.S.A. 86, 7480–7484 (1989).

  12. 12

    Toguchida, J. et al. Preferential mutation of paternally derived RB gene as the initial event in sporadic osteosarcoma. Nature 338, 156–158 (1989).

  13. 13

    Sapienza, C. Genome imprinting and carcinogenesis. Biochim. Biophys. Acta 1072, 51–61 (1991).

  14. 14

    Hall, G.H. Genomic imprinting: review and relevance to human diseases. Am. J. hum. Genet. 46, 857–873 (1990).

  15. 15

    Reik, W. Genomic imprinting and genetic disorders in man. Trends Genet. 5, 331–336 (1989).

  16. 16

    Dryja, T.P. et al. Parental origin of mutations of the retinoblastoma gene. Nature 339, 556–558 (1989).

  17. 17

    Stephens, K. et al. Preferential mutation of the neurofibromatosis type 1 gene in paternally derived chromosomes. Hum. Genet. 88, 279–282 (1992).

  18. 18

    Zhu, X. et al. Preferential germline mutation of the paternal allele in retinoblastoma. Nature 340, 312–313 (1989).

  19. 19

    Leach, R.J. et al. Preferential retention of the paternal alleles in human retinoblastoma: evidence for genomic imprinting. Cell Growth Diff. 1, 401–406 (1990).

  20. 20

    Kushner, B.H., Gilbert, F. & Helson, L. Familial neuroblastoma;case reports, literature review, and etiologic considerations. Cancer 57, 1887–1893 (1986).

  21. 21

    Knudson, A.G. & Strong, L.C. Mutation and cancer: Neuroblastoma and pheochromocytoma. Am. J. hum. Genet. 24, 514–532 (1972).

  22. 22

    Clausen, N., Andersson, P. & Tommerup, N. Familial occurrence of neuroblastoma, von Recklinghausen's neurofibromatosis, Hirsprung's aganglionosis and Jaw-winking syndrome. Acta Paediatr. Scand. 78, 736–741 (1989).

  23. 23

    Robertson, C.M., Tyrrell, J.C. & Pritchard, J. Familial neural crest tumours. Eur. J. Pediatr. 150, 789–792 (1991).

  24. 24

    Surani, M.A., Reik, W. & Allen, N.D. Transgenes as molecular probes for genomic imprinting. Trends Genet. 4, 59–62 (1988).

  25. 25

    Hoovers, J.M.N., Dietrich, A.J.J. & Mannens, M.M.A.M. Imprinting and the Beckwith-Wiedemann syndrome. Lancet 339, 1228 (1992).

  26. 26

    Versteeg, R. et al. N-myc expression switched off and class I human leucocyte antigen expression switched on after somatic cell fusion of neuroblastoma cells. Molec. cell Biol. 10, 5416–5423 (1990).

  27. 27

    Ellmeier, W., Aguzzi, A., Kleiner, E., Kurzbauer, R. & Weith, A. Mutually exclusive expression of a helix-loop-helix gene and N-myc in human neuroblastomas and in normal development. Embo J. 11, 2563–2571 (1992).

  28. 28

    Evans, A.E., d'Angio, G.J. & Randolph, J. A proposed staging system for children with neuroblastoma. Cancer 27, 374–378 (1971).

  29. 29

    Müllenbach, R., Lagoda, P.J.L. & Welter, C. An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet. 5, 391 (1989).

  30. 30

    Feinberg, A.P. & Vogelstein, B.A. A technique for radio labeling DNA restriction endonuclease fragments to high specific activity. Annal. Biochem. 137, 266–267 (1989).

  31. 31

    Schwab, M., Alitalo, K. & Klempnauer, K.H. Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 305, 245–248 (1983).

  32. 32

    Derom, C. et al. Zygosity determination in newborn twins using DNA variants. J. med. Genet. 22, 279–282 (1985).

  33. 33

    Lauthier, V., Mariat, D. & Vergnaud, G. CEB15 detects a VNTR locus (het:92%) on chromosome 1p. Hum. molec. Genet. 1, 63 (1992).

  34. 34

    Dracopoli, N.C. et al. The CEPH consortium linkage map of human chromosome 1. Genomics 9, 686–700 (1991).

Download references

Author information

Affiliations

  1. Institute of Human Genetics, Academic Medical Centre, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands

    • Huib Caron
    • , Peter van Sluis
    • , Melanie van Hoeve
    • , Rosalyn Slater
    • , Marcel Mannens
    • , Andries Westerveld
    •  & Rogier Versteeg
  2. Department of Paediatric Oncology and Haematology, Emma Kinder Ziekenhuis/Academic Medical Centre, University of Amsterdam, The Netherlands

    • Huib Caron
    • , Jan de Kraker
    •  & P.A. Voûte
  3. Department of Pathology, Academic Medical Centre, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands

    • Johannes Bras

Authors

  1. Search for Huib Caron in:

  2. Search for Peter van Sluis in:

  3. Search for Melanie van Hoeve in:

  4. Search for Jan de Kraker in:

  5. Search for Johannes Bras in:

  6. Search for Rosalyn Slater in:

  7. Search for Marcel Mannens in:

  8. Search for P.A. Voûte in:

  9. Search for Andries Westerveld in:

  10. Search for Rogier Versteeg in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/ng0693-187

Further reading