Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene

Abstract

Mice with the recessive motheaten (me) or the allelic viable motheaten (mev) mutations express a severe autoimmune and immunodeficiency syndrome. We have shown that the basic defect in these mice involves lesions in the gene which encodes haematopoietic cell phosphatase (HCP). These mice thus provide excellent models for investigating the roles of phosphatases in haematopoiesis and the nature of the genetic and cellular events linking impaired haematopoiesis to severe immunodeficiency and expression of systemic autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Green, M.C., Shultz, L.D. Motheaten, an immunodeficient mutant of the mouse. J. Hered. 66, 250–258 (1975).

    Article  CAS  Google Scholar 

  2. Sidman, C.L., Shultz, L.D. & Unanue, E.R. The mouse mutant “motheaten”. I. Development of lymphocyte populations. J. Immunol. 121, 2392–2398 (1978).

    CAS  PubMed  Google Scholar 

  3. Shultz, L.D., Coman, D.R., Bailey, C.L., Beamer, W.G. & Sidman, C.L. “Viable Motheaten”, a new allele at the Motheaten locus. I. Pathology. Am. J. Pathol. 116, 179–192 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Greiner, D.L. et al. Defective lymphopoiesis in the bone marrow of motheaten (me/me) and viable motheaten (mev/mev) mutant mice. I. Analysis of the development of prothymocytes, B lineage cells and terminal deoxynucleotidyl-transferase-positive cells. J. exp. Med. 164, 1129–1144 (1986).

    Article  CAS  Google Scholar 

  5. Davidson, W.F., Morse, H.C., Sharrow, S.D. & Chused, T.M. Phenotypic and functional effects of the motheaten gene on murine B and T lymphocytes. J. Immunol. 122, 884–891 (1979).

    CAS  PubMed  Google Scholar 

  6. Sidman, C.L., Shultz, L.D. & Unanue, E.R. The mouse mutant “motheaten”. II. Functional studies of the immune system. J. Immunol. 121, 2399–2404 (1978).

    CAS  PubMed  Google Scholar 

  7. Sidman, C.L., Shultz, L.D., Hardy, R., Hayakawa, K. & Herzenberg, L.A. Production of immunoglobulin isotypes by Ly–1+ B cells in viable motheaten and normal mice. Science 232, 1423–1425 (1986).

    Article  CAS  Google Scholar 

  8. Clark, E.A., Shultz, L.D. & Pollack, S.B. Mutations in mice that influence natural killer (NK) cell activity. Immunogenet. 12, 601–613 (1981).

    Article  CAS  Google Scholar 

  9. Koo, G.C., Manyak, C.L., Dasch, J., Ellingsworth, L. & Shultz, L.D. Suppressive effects of monocytic cells and TGF–beta on NK differentiation in autoimmune viable motheaten mutant mice. J. Immunol. 147, 1194–1200 (1991).

    CAS  PubMed  Google Scholar 

  10. McCoy, K.L., Neilson, K. & Clagett, J. Spontaneous production of colony-stimulating activity by splenic MAC–1 antigen-positive cells from autoimmune motheaten mice. J. Immunol. 132, 272–276 (1984).

    CAS  PubMed  Google Scholar 

  11. Hayashi, S.I., Witte, P.L., Shultz, L.D. & Kincade, P.W. Lymphohemopoiesis in culture is prevented by interaction with adherent bone marrow cells from mutant viable motheaten mice. J. Immunol. 140, 2139–2147 (1988).

    CAS  PubMed  Google Scholar 

  12. Yi, T., Cleveland, J.L. & Ihle, J.N. Protein tyrosine phosphatase containing SH2 domains. Characterization, preferential expression in hematopoietic cells, and localization to human chromosome 12p12–p13. Molec. cell Biol. 12, 836–846 (1992).

    Article  CAS  Google Scholar 

  13. Plutzky, J. et al. Chromosomal localization of an SH2-containing tyrosine phosphatase (PTPN6). Genomics 13, 869–872 (1992).

    Article  CAS  Google Scholar 

  14. Shen, S-H., Bastien, L., Posner, R.I. & Chretien, P. A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases. Nature 352, 736–739 (1991).

    Article  CAS  Google Scholar 

  15. Matthews, R.J., Bowne, D.B., Flores, E. & Thomas, M.L. Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine-rich sequences. Molec. cell Biol. 12, 2396–2405 (1992).

    Article  CAS  Google Scholar 

  16. Plutzky, J., Neel, B.G. & Rosenberg, R.D. Isolation of an src homology 2-containing tyrosine phosphatase. Proc. natn. Acad. Sci. U.S.A. 89, 1123–1127 (1992).

    Article  CAS  Google Scholar 

  17. Sidman, C.L., Marshall, J.D. & Allen, R.D. Murine “viable motheaten” mutation reveals a gene critical to the development of both B and T lymphocytes. Proc. natn. Acad. Sci. U.S.A. 86, 6279–6282 (1989).

    Article  CAS  Google Scholar 

  18. Mount, S.M. A catalogue of splice junction sequences. Nucl. Acid Res. 10, 459–472 (1982).

    Article  CAS  Google Scholar 

  19. Weatherall, D.J. The New Genetics and Clinical Practice 2nd edn 80–81 (University Press, Oxford, 1985).

    Google Scholar 

  20. Yi, T., Gilbert, D.J., Jenkins, N.A., Copeland, N.G. & Ihle, J.N. Assignment of a novel protein tyrosine phosphatase gene (Hcph). Genomics 14, 793–795 (1992).

    Article  CAS  Google Scholar 

  21. Hunter, T. Protein-tyrosine phosphatase: the other side of the coin. Cell 58, 1013–1016 (1989).

    Article  CAS  Google Scholar 

  22. Yarden, Y. & Ullrich, A. Growth factor receptor tyrosine kinases. Ann. Rev. Biochem. 57, 443–478 (1988).

    Article  CAS  Google Scholar 

  23. Pawson, T. & Bernstein, A. Receptor tyrosine kinases: genetic evidence for their role in Drosophila and mouse development. Trends Genet. 6, 350–356 (1990).

    Article  CAS  Google Scholar 

  24. Cool, D.E., Tonks, N.K., Fischer, E.H. & Krebs, E.G. Expression of a human T-cell protein-tyrosine-phosphatase in baby hamster kidney cells. Proc. natn. Acad. Sci. U.S.A. 87, 7280–7284 (1990).

    Article  CAS  Google Scholar 

  25. Ramponi, G., Ruggiero, M. & Rauyei, G. Overexpression of a synthetic phospho-tyrosine protein phosphatase gene inhibits normal and transformed cell growth. Int. J. Cancer 51, 652–656 (1992).

    Article  CAS  Google Scholar 

  26. Brown-Shimer, S., Johnson, K.A., Hill, D.E. & Bruskin, A.M. Effect of protein tyrosine phosphatase 1B expression on transformation by the human neu oncogene. Cancer Res. 52, 478–482 (1992).

    CAS  PubMed  Google Scholar 

  27. Koch, C.A., Anderson, D., Moran, M.F., Ellis, C. & Pawson, T. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252, 668–674 (1991).

    Article  CAS  Google Scholar 

  28. Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J. & Rutter, W.J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  29. Chomczynski, P. & Sacchi, N.A. Single-step method of RNA isolation by acid guanidinum thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  30. Sambrook, J., Fritsch, E.F. & Maniatis, T. in Molecular Cloning: A Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  31. Winship, P.R. An improved method for directly sequencing PCR amplified material using dimethyl sulphoxide. Nucl. Acid Res. 17, 1266 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wo Tsui, H., Siminovitch, K., de Souza, L. et al. Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nat Genet 4, 124–129 (1993). https://doi.org/10.1038/ng0693-124

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0693-124

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing