Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Transgenic mice containing a human heavy chain immunoglobulin gene fragment cloned in a yeast artificial chromosome

A Correction to this article was published on 01 July 1993


We have developed a method for the introduction of yeast artificial chromosomes (YACs) into transgenic mice. An 85 kilobase (kb) fragment of the human heavy chain immunoglobulin gene was cloned as a YAC, and embryonic stem cell lines carrying intact, integrated YACs were derived by co–lipofection of the YAC with an unlinked selectable marker. Chimaeric founder animals were produced by blastocyst injection, and offspring transgenic for the YAC were obtained. Analysis of serum from these offspring for human heavy chain antibody subunits demonstrated expression of the YAC–borne immunoglobulin gene fragment. Co–lipofection may prove to be a highly–successful means of producing transgenic mice containing large gene fragments in YACs.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Jaenisch, R. Transgenic Animals. Science 240, 1468–1474 (1988).

    CAS  Article  Google Scholar 

  2. 2

    Brinster, R., Allen, J., Behringer, R., Gelinas, R. & Palmiter, R. Introns increase transcriptional efficiency in transgenic mice. Proc. natn. Acad. Sci. U.S.A. 85, 836–840 (1988).

    CAS  Article  Google Scholar 

  3. 3

    Burke, D., Carle, G. & Olson, M. Cloning of large segments of exogenous DNA into yeast artificial chromosomes. Science 236, 806–812 (1987).

    CAS  Article  Google Scholar 

  4. 4

    Pachnis, V., Pevney, L., Rothstein, R. & Costantini, F. Transfer of a yeast artificial chromosome carrying human DNA from Saccharomyces cerevisiae into human cells. Proc. natn. Acad. Sci. U.S.A. 87, 5109–5113 (1990).

    CAS  Article  Google Scholar 

  5. 5

    Pavan, W., Hieter, P. & Reeves, R. Modification and transfer into an embryonal carcinoma cell line of a 360-kilobase human-derived yeast artificial chromosome. Molec. cell Biol. 10, 4163–4169 (1990).

    CAS  Article  Google Scholar 

  6. 6

    Gnirke, A. et al. Cloning and in vivo expression of the human GART gene using yeast artificial chromosomes. EMBO J. 10, 1629–1634 (1991).

    CAS  Article  Google Scholar 

  7. 7

    Eliceiri, B. et al. Stable integration and expression in mouse cells of yeast artificial chromosomes harboring human genes. Proc. natn. Acad. Sci. U.S.A. 88, 2179–2183 (1991).

    CAS  Article  Google Scholar 

  8. 8

    Strauss, W. & Jaenisch, R. Molecular complementation of a collagen mutation in mammalian cells using yeast artificial chromosomes. EMBO J. 11, 417–422. (1992).

    CAS  Article  Google Scholar 

  9. 9

    Davies, N., Rosewell, I. & Bruggemann, M. Targeted alterations in yeast artificial chromosomes for inter-species gene transfer. Nucl. Acids Res. 20, 2693–2698 (1992).

    CAS  Article  Google Scholar 

  10. 10

    Schedl, A. et al. Transgenic mice generated by pronuclear injection of a yeast artificial chromosome. Nuc. Acids Res. 20, 3073–3077 (1992).

    CAS  Article  Google Scholar 

  11. 11

    Smith, D., Smyth, A. & Moir, D. Amplification of large artificial chomosomes. Proc. natn. Acad. Sci. U.S.A. 87, 8242–8246 (1990).

    CAS  Article  Google Scholar 

  12. 12

    Hofker, M., Walter, M. & Cox, D. Complete physical map of the human immunoglobulin heavy chain constant region gene complex. Proc. natn. Acad. Sci. U.S.A. 86, 5567–5571 (1989).

    CAS  Article  Google Scholar 

  13. 13

    Berman, J. et al. Content and organization of the human Ig VH locus: Definition of three new VH families and linkage to the Ig CH locus. EMBO J. 7, 727–738 (1988).

    CAS  Article  Google Scholar 

  14. 14

    Shin, E. et al. Physical map of the 3′ region of the human immunoglobulin heavy chain locus: clustering of autoantibody related variable segments in one haplotype. EMBO J. 10, 3641–3645 (1991).

    CAS  Article  Google Scholar 

  15. 15

    Traver, C.N., Klapholz, S., Hyman, R.W. & Davis, R.W. Rapid screening of a human genomic library in yeast artificial chromosomes for single-copy sequences. Proc. natn. Acad. Sci. U.S.A. 86, 5898–5902 (1989).

    CAS  Article  Google Scholar 

  16. 16

    Fox, T. et al. Analysis and manipulation of yeast mitochondrial genes, in Guide to Yeast Genetics and Molecular Biology (eds Guthrie, C. & Fink, G.) (Academic Press, San Diego, CA, 1991).

    Google Scholar 

  17. 17

    Word, C., Blattner, F. & Kuzeil, W. The human immunoglobulin Cmu-Cdelta locus: complete nucleotide sequence and structural analysis. Int. Immunol. 1, 296–309 (1989).

    CAS  Article  Google Scholar 

  18. 18

    Ichihara, Y., Matsuoka, H. & Kurosawa, Y. Organization of human heavy chain diversity gene loci. EMBO J. 7, 4141–4150 (1988).

    CAS  Article  Google Scholar 

  19. 19

    Matsuda, F. et al. Dispersed localization of D segments in the human immunoglobulin heavy-chain locus. EMBO J. 7, 1047–1051 (1988).

    CAS  Article  Google Scholar 

  20. 20

    Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693–702 (1991).

    CAS  Article  Google Scholar 

  21. 21

    Huxley, C., Hagino, Y., Schlessinger, D. & Olson, M. The human HPRT gene on a yeast artificial chromosome is functinal when transferred to mouse cells by cell fusion. Genomics 9, 742–750 (1991).

    CAS  Article  Google Scholar 

  22. 22

    Bradley, A. Production and analysis of chimaeric mice. in Teratocarcinomas and embryonic stem cells: a practical approach (ed. Robertson, E.) 113–152 (IRL Press, Oxford, 1987).

    Google Scholar 

  23. 23

    Chen, J. et al. Immunoglobulin gene rearrangements in B cell deficient mice generated by targeted deletion of the JH locus. Int. Immun. (in the press).

  24. 24

    Pavan, W.J. & Reeves, R.H. Integrative selection of human chromosome-specific yeast artificial chromosomes. Proc. natn. Acad. Sci. U.S.A. 88, 7788–7791 (1991).

    CAS  Article  Google Scholar 

  25. 25

    Riley, J., Morten, J. & Anand, R. Targeted integration of neomycin into yeast artificial chromosomes (YACs) for transfection into mammalian cells. Nucl. Acids Res. 20, 2971–2976 (1992).

    CAS  Article  Google Scholar 

  26. 26

    de la Luna, S., Soria, I., Pulido, D., Ortin, J. & Jimenez, A. Efficient transformation of mammalian cells with constructs containing a puromycin-resistance marker. Gene 62, 121–126 (1988).

    CAS  Article  Google Scholar 

  27. 27

    Neil, D. et al. Structural Instability of human tandemly repeated DNA sequences cloned in yeast artificial chromosomal vectors. Nucl. Acids Res. 18, 1421–1428 (1990).

    CAS  Article  Google Scholar 

  28. 28

    Brown, S. XIST and the mapping of the X chromosome inactivation centre. BioEssays 13, 607–612 (1991).

    CAS  Article  Google Scholar 

  29. 29

    Gnirke, A. & Huxley, C. Transfer of the human HPRT and GART genes from yeast to mammalian cells by microinjection of YAC DNA. Somat. Cell molec. Genet. 17, 573–580 (1991).

    CAS  Article  Google Scholar 

  30. 30

    Ramirez-Solis, R., Davis, A.C. & Bradley, A. Gene targeting in mouse embryonic stem cells. Methods in Enzymology (in the press).

  31. 31

    Guise, J., Galli, G., Nevins, J. & Tucker, P. Developmental Regulation of Secreted and membrane Forms of Immunoglobulin μ chain. in Immunoglobulin Genes (eds Honjo, T., Alt, F. & Rabbitts, T.) 275–301 (Academic, San Diego, CA, 1989).

    Chapter  Google Scholar 

  32. 32

    Berman, J. et al. VH gene usage in humans: biased usage of the VH6 gene in immature B lymphoid cells. Eur. J. Immunol. 21, 1311–1314 (1991).

    CAS  Article  Google Scholar 

  33. 33

    Lubin, I. et al. Engranftment and development of human T and B cells in mice after bone marrow transplantation. Science 252, 427–431 (1991).

    CAS  Article  Google Scholar 

  34. 34

    Hawkins, R., Russell, S. & Winter, G. Selection of phage antibodies by binding affintiy: mimicking affinity maturation. J. molec. Biol. 226, 889–896 (1992).

    CAS  Article  Google Scholar 

  35. 35

    Strauss, W., Jaenisch, E. & Jaenisch, R. A strategy for rapid production and screening of yeast artificial chromosome libraries. Mamm. Genome 2, 150–157 (1992).

    CAS  Article  Google Scholar 

  36. 36

    Tybulewicz, V.L.J., Crawford, C.E., Jackson, P.J., Bronson, R.T. & Mulligan, R.C. Neonatal lethality and lympopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 40, 271–281 (1991).

    Google Scholar 

  37. 37

    McMahon, A.P. & Bradley, A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1073–1085 (1990).

    CAS  Article  Google Scholar 

  38. 38

    Laird, P. et al. Simplified mammalian DNA isolation procedure. Nucl. Acids Res. 19, 4293 (1991).

    CAS  Article  Google Scholar 

  39. 39

    Ramirez-Solis, R. et al. Genomic DNA microextraction: a method to screen numerous samples. Anal. Biochem. 201, 331–335 (1992).

    CAS  Article  Google Scholar 

  40. 40

    Jakobovits, A. et al. Germ-line transmission and expression of a human-derived yeast artificial chromosome. Nature 362, 255–258 (1993).

    CAS  Article  Google Scholar 

  41. 41

    Schedl, A. et al. A yeast artificial chromosome covering the tyrosinase gene confers copy number-dependent expression in transgenic mice. Nature 362, 258–261 (1993).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Choi, T., Hollenbach, P., Pearson, B. et al. Transgenic mice containing a human heavy chain immunoglobulin gene fragment cloned in a yeast artificial chromosome. Nat Genet 4, 117–123 (1993).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing