Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system


Mouse embryos deficient in Gata3 die by 11 days post coitum (d.p.c.) from pathology of undetermined origin1. We recently showed that Gata3-directed lacZ expression of a 625-kb Gata3 YAC transgene in mice mimics endogenous Gata3 expression, except in thymus and the sympathoadrenal system2. As this transgene failed to overcome embryonic lethality (unpublished data and ref. 3) in Gata3−/− mice, we hypothesized that a neuroendocrine deficiency in the sympathetic nervous system (SNS) might cause embryonic lethality in these mutants. We find here that null mutation of Gata3 leads to reduced accumulation of Th (encoding tyrosine hydroxylase, Th) and Dbh (dopamine β-hydroxylase, Dbh) mRNA, whereas several other SNS genes are unaffected. We show that Th and Dbh deficiencies lead to reduced noradrenaline in the SNS, and that noradrenaline deficiency is a proximal cause of death in mutants by feeding catechol intermediates to pregnant dams, thereby partially averting Gata3 mutation-induced lethality. These older, pharmacologically rescued mutants revealed abnormalities that previously could not be detected in untreated mutants. These late embryonic defects include renal hypoplasia and developmental defects in structures derived from cephalic neural crest cells. Thus we have shown that Gata3 has a role in the differentiation of multiple cell lineages during embryogenesis.

Figure 1: Lack of Th expression in SG of Gata3-mutant embryos.
Figure 2: Th and Dbh mRNA and noradrenaline levels in Gata3-mutant embryos.
Figure 3: Catecholamine administration rescues Gata3-mutant embryos beyond their nominal time of death at 11 d.p.c.
Figure 4: Th is expressed in the CNS, but not in the para-aortic bodies or the adrenal glands, of Gata3-mutant embryos.
Figure 5: Developmental abnormalities in pharmacologically rescued Gata3 mutant embryos.


  1. 1

    Pandolfi, P.P. et al. Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nature Genet. 11, 40–44 (1995).

    CAS  Article  Google Scholar 

  2. 2

    Lakshmanan, G. et al. Localization of distant urogenital system-, central nervous system-, and endocardium-specific transcriptional regulatory elements in the GATA-3 locus. Mol. Cell. Biol. 19, 1558–1568 (1999).

    CAS  Article  Google Scholar 

  3. 3

    Lakshmanan, G., Lieuw, K.H., Grosveld, F. & Engel, J.D. Partial rescue of Gata3 by yeast artificial chromosome transgenes. Dev. Biol. 204, 451–463 (1998).

    CAS  Article  Google Scholar 

  4. 4

    Kitsukawa, T. et al. Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 19, 995–1005 (1997).

    CAS  Article  Google Scholar 

  5. 5

    Britsch, S. et al. The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev. 12, 1825–1836 (1998).

    CAS  Article  Google Scholar 

  6. 6

    Groves, A.K. et al. Differential regulation of transcription factor gene expression and phenotypic markers in developing sympathetic neurons. Development 121, 887–901 (1995).

    CAS  PubMed  Google Scholar 

  7. 7

    Rahman, M.K., Nagatsu, T. & Kato, T. Aromatic L-amino acid decarboxylase activity in central and peripheral tissues and serum of rats with L-DOPA and L-5-hydroxytryptophan as substrates. Biochem. Pharmacol. 30, 645–649 (1981).

    CAS  Article  Google Scholar 

  8. 8

    Thomas, S.A., Matsumoto, A.M. & Palmiter, R.D. Noradrenaline is essential for mouse fetal development. Nature 374, 643–646 (1995).

    CAS  Article  Google Scholar 

  9. 9

    Zhou, Q.Y., Quaife, C.J. & Palmiter, R.D. Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature 374, 640–643 (1995).

    CAS  Article  Google Scholar 

  10. 10

    Kobayashi, K. et al. Targeted disruption of the tyrosine hydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice. J. Biol. Chem. 270, 27235–27243 (1995).

    CAS  Article  Google Scholar 

  11. 11

    Tiveron, M.C., Hirsch, M.R. & Brunet, J.F. The expression pattern of the transcription factor Phox2 delineates synaptic pathways of the autonomic nervous system. J. Neurosci. 16, 7649–7660 (1996).

    CAS  Article  Google Scholar 

  12. 12

    Hirsch, M.R., Tiveron, M.C., Guillemot, F., Brunet, J.F. & Goridis, C. Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development 125, 599–608 (1998).

    CAS  PubMed  Google Scholar 

  13. 13

    Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J.F. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399, 366–370 (1999).

    CAS  Article  Google Scholar 

  14. 14

    Morin, X. et al. Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Neuron 18, 411–423 (1997).

    CAS  Article  Google Scholar 

  15. 15

    Oosterwegel, M., Timmerman, J., Leiden, J. & Clevers, H. Expression of GATA-3 during lymphocyte differentiation and mouse embryogenesis. Dev. Immunol. 3, 1–11 (1992).

    CAS  Article  Google Scholar 

  16. 16

    Nardelli, J., Thiesson, D., Fujiwara, Y., Tsai, F.Y. & Orkin, S.H. Expression and genetic interaction of transcription factors GATA-2 and GATA-3 during development of the mouse central nervous system. Dev. Biol. 210, 305–321 (1999).

    CAS  Article  Google Scholar 

  17. 17

    George, K.M. et al. Embryonic expression and cloning of the murine GATA-3 gene. Development 120, 2673–2686 (1994).

    CAS  PubMed  Google Scholar 

  18. 18

    Lieuw, K.H., Li, G., Zhou, Y., Grosveld, F. & Engel, J.D. Temporal and spatial control of murine GATA-3 transcription by promoter-proximal regulatory elements. Dev. Biol. 188, 1–16 (1997).

    CAS  Article  Google Scholar 

  19. 19

    Vainio, S. & Muller, U. Inductive tissue interactions, cell signaling, and the control of kidney organogenesis. Cell 90, 975–978 (1997).

    CAS  Article  Google Scholar 

  20. 20

    Esler, M., Kaye, D., Lambert, G., Esler, D. & Jennings, G. Adrenergic nervous system in heart failure. Am. J. Cardiol. 80, 7L–14L (1997).

    CAS  Article  Google Scholar 

  21. 21

    Yang, C., Kim, H.S., Seo, H. & Kim, K.S. Identification and characterization of potential cis-regulatory elements governing transcriptional activation of the rat tyrosine hydroxylase gene. J. Neurochem. 71, 1358–1368 (1998).

    CAS  Article  Google Scholar 

  22. 22

    Joh, T.H. et al. Unique and cell-type-specific tyrosine hydroxylase gene expression. Adv. Pharmacol. 42, 33–36 (1998).

    CAS  Article  Google Scholar 

  23. 23

    Hoyle, G.W., Mercer, E.H., Palmiter, R.D. & Brinster, R.L. Cell-specific expression from the human dopamine β-hydroxylase promoter in transgenic mice is controlled via a combination of positive and negative regulatory elements. J. Neurosci. 14, 2455–2463 (1994).

    CAS  Article  Google Scholar 

  24. 24

    Dressler, G.R. & Douglass, E.C. Pax-2 is a DNA-binding protein expressed in embryonic kidney and Wilms tumor. Proc. Natl Acad. Sci. USA 89, 1179–1183 (1992).

    CAS  Article  Google Scholar 

  25. 25

    ten Berge, D., Brouwer, A., Korving, J., Martin, J.F. & Meijlink, F. Prx1 and Prx2 in skeletogenesis: roles in the craniofacial region, inner ear and limbs. Development 125, 3831–3842 (1998).

    CAS  PubMed  Google Scholar 

  26. 26

    Leonard, M.W., Lim, K.C. & Engel, J.D. Expression of the chicken GATA factor family during early erythroid development and differentiation. Development 119, 519–531 (1993).

    CAS  PubMed  Google Scholar 

  27. 27

    Onodera, K., Shavit, J.A., Motohashi, H., Yamamoto, M. & Engel, J.D. Perinatal synthetic lethality and hematopoietic defects in compound mafG :mafK mutant mice. EMBO J. 19, 1335–1345 (2000).

    CAS  Article  Google Scholar 

Download references


We thank R. Palmiter, M. Yamamoto, K. Onodera, K. Tanimoto and Y. Zhou for discussions and help with the manuscript. Research support was provided by an NIH grant (GM28896; J.D.E.) and facility support by an NCI award to the Robert H. Lurie Comprehensive Cancer Center of Northwestern University (CA60553).

Author information



Corresponding author

Correspondence to James Douglas Engel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lim, KC., Lakshmanan, G., Crawford, S. et al. Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nat Genet 25, 209–212 (2000).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing