Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema

Abstract

Primary lymphoedema is a rare, autosomal dominant disorder that leads to a disabling and disfiguring swelling of the extremities and, when untreated, tends to worsen with time. Here we link primary human lymphoedema to the FLT4 locus, encoding vascular endothelial growth factor receptor-3 (VEGFR-3), in several families. All disease-associated alleles analysed had missense mutations and encoded proteins with an inactive tyrosine kinase, preventing downstream gene activation. Our study establishes that VEGFR-3 is important for normal lymphatic vascular function and that mutations interfering with VEGFR-3 signal transduction are a cause of primary lymphoedema.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Pedigrees of four lymphoedema families linked to chromosome 5q.
Figure 2: Missense mutations in FLT4 alleles of the lymphoedema patients abolish the receptor tyrosyl phosphorylation.
Figure 3: Analysis of VEGFR-3 autophosphorylation in a ligand-dependent system.
Figure 4: The turnover times of mutant and wild-type VEGFR-3 analysed by pulse-chase labelling analysis.
Figure 5: Ability of wild-type and mutant VEGFR-3 to activate downstream gene expression.
Figure 6: Model of the VEGFR-3 protein fold showing the positions of lymphoedema-associated mutations.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. 1

    Risau, W. Mechanisms of angiogenesis. Nature 386, 671–674 (1997).

  2. 2

    Korpelainen, E.I. & Alitalo, K. Signaling angiogenesis and lymphangiogenesis. Curr. Opin. Cell Biol. 10, 159–164 (1998).

  3. 3

    Ferrara, N. Molecular and biological properties of vascular endothelial growth factor . J. Mol. Med. 77, 527– 543 (1999).

  4. 4

    Veikkola, T., Karkkainen, M.J., Claesson-Welsh, L. & Alitalo, K. Regulation of angiogenesis via vascular endothelial growth factor receptors . Cancer Res. 60, 203–212 (2000).

  5. 5

    Pajusola, K. et al. FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines. Cancer Res. 52, 5738–5743 (1992).

  6. 6

    Galland, F. et al. The FLT4 gene encodes a transmembrane tyrosine kinase related to the vascular endothelial growth factor receptor. Oncogene 8, 1233–1240 ( 1993).

  7. 7

    Joukov, V. et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 15, 290–298 ( 1996).

  8. 8

    Lee, J. et al. Vascular endothelial growth factor-related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4. Proc. Natl Acad. Sci. USA 93, 1988–1992 (1996).

  9. 9

    Achen, M.G. et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4) . Proc. Natl Acad. Sci. USA 95, 548– 553 (1998).

  10. 10

    Kaipainen, A. et al. Expression of the fms-like tyrosine kinase FLT4 gene becomes restricted to endothelium of lymphatic vessels during development . Proc. Natl Acad. Sci. USA 92, 3566– 3570 (1995).

  11. 11

    Dumont, D.J. et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282, 946– 949 (1998).

  12. 12

    Kukk, E. et al. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggest a role in lymphatic vascular development. Development 122, 3829–3837 (1996).

  13. 13

    Jeltsch, M. et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice . Science 276, 1423–1425 (1997).

  14. 14

    Oh, S.J. et al. VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev. Biol. 188, 96–109 ( 1997).

  15. 15

    Milroy, W.F. An undescribed variety of hereditary oedema. NY Med. J. 56, 505–508 (1892).

  16. 16

    Meige, H. Dystophie oedematoeuse hereditaire. Presse Med. 6, 341–343 (1898).

  17. 17

    Leu, J.J. & Lie, J.T. Diseases of the veins and lymphatic vessels, including angiodysplasias. in Vascular Pathology (eds Stehbens, W.E. & Lie, J.T.) 489–516 (Chapman & Hall, London, 1995).

  18. 18

    Ferrell, R.E. et al. Hereditary lymphedema: evidence for linkage and genetic heterogeneity . Hum. Mol. Genet. 7, 2073– 2078 (1998).

  19. 19

    Witte, M.H. et al. Phenotypic and genotypic heterogeneity in familial Milroy lymphedema. Lymphology 31, 145– 155 (1998).

  20. 20

    Evans, A.L. et al. Mapping of primary congenital lymphedema to the 5q35.3 region . Am. J. Hum. Genet. 64, 547– 555 (1999).

  21. 21

    Jussila, L. et al. Lymphatic endothelium and Kaposi's sarcoma spindle cells detected by antibodies against the vascular endothelial growth factor receptor-3. Cancer Res. 58, 1599–1604 (1998).

  22. 22

    Pajusola, K. et al. Signalling properties of FLT4, a proteolytically processed receptor tyrosine kinase related to two VEGF receptors. Oncogene 9, 3545–3555 ( 1994).

  23. 23

    van der Geer, P., Hunter, T. & Lindberg, R. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu. Rev. Cell Biol. 10, 251– 337 (1994).

  24. 24

    McTigue, M.A. et al. Crystal structure of the kinase domain of human vascular endothelial growth factor receptor 2: a key enzyme in angiogenesis. Structure 7, 319–330 ( 1999).

  25. 25

    Hanks, S.K. & Quinn, A.M. Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol. 200, 38–62 (1991).

  26. 26

    Hubbard, S.R. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16, 5572–5581 (1997).

  27. 27

    Zheng, J. et al. Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor. Biochemistry 32, 2154–2161 ( 1993).

  28. 28

    The Protein Kinase Facts Book: Protein Tyrosine Kinases (eds Hardie, G. & Hanks, S.) (Academic, San Diego, 1995).

  29. 29

    Felder, S., LaVin, J., Ullrich, A. & Schlessinger, J. Kinetics of binding, endocytosis, and recycling of EGF receptor mutants. J. Cell Biol. 117, 203–212 (1992).

  30. 30

    Millauer, B., Shawver, L.K., Plate, K.H., Risau, W. & Ullrich, A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367 , 576–579 (1994).

  31. 31

    Burke, D., Wilkes, D., Blundell, T.L. & Malcolm, S. Fibroblast growth factor receptors: lessons from the genes. Trends Biochem. Sci. 23, 59–62 (1998).

  32. 32

    Muenke, M. & Schell, U. Fibroblast-growth-factor receptor mutations in human skeletal disorders. Trends Genet. 11, 308–313 (1995).

  33. 33

    Bardelli, A., Pugliese, L. & Comoglio, P.M. “Invasive-growth” signaling by the Met/HGF receptor: the hereditary renal carcinoma connection. Biochim. Biophys. Acta 1333, M41–51 ( 1997).

  34. 34

    Schmidt, L. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nature Genet. 16, 68–73 ( 1997).

  35. 35

    Pasini, B., Ceccherini, I. & Romeo, G. RET mutations in human disease. Trends Genet. 12, 138–144 ( 1996).

  36. 36

    Robertson, K., Mason, I. & Hall, S. Hirschsprung's disease: genetic mutations in mice and men. Gut 41, 436–441 ( 1997).

  37. 37

    Spritz, R.A. Molecular basis of human piebaldism. J. Invest. Dermatol. 103, 137S–140S (1994).

  38. 38

    Besmer, P. et al. The kit-ligand (steel factor) and its receptor c-kit/W: pleiotropic roles in gametogenesis and melanogenesis. Dev. Suppl. 125–137 (1993).

  39. 39

    Schinzel, A. Catalog of Unbalanced Chromosome Aberrations in Man (Walter de Gruyter, Berlin, 1983).

  40. 40

    Groen, S.E., Drewes, J.G., de Boer, E.G., Hoovers, J.M.N. & Hennekam, R.C.M. Repeated unbalanced offspring due to a familial translocation involving chromosomes 5 and 6. Am. J. Med. Genet. 80, 448–453 (1998).

  41. 41

    Barber, J.C. et al. Unbalanced translocation in a mother and her son in one of two 5;10 translocation families. Am. J. Med. Genet. 62, 84–90 (1996).

  42. 42

    Mowat, D., Jauch, A., Robson, L. & Smith, A. Duplication within chromosome 5q characterized by fluorescence in situ hybridization. Am. J. Med. Genet. 83, 361–364 (1999).

  43. 43

    Mangion, J. et al. A gene for lymphedema-distichiasis maps to 16q24.3. Am. J. Hum. Genet. 65, 427–432 (1999).

  44. 44

    Korpelainen, E.I., Karkkainen, M., Gunji, Y., Vikkula, M. & Alitalo, K. Endothelial receptor tyrosine kinases activate the STAT signaling pathway: mutant Tie-2 causing venous malformations signals a distinct STAT activation response. Oncogene 18, 1–8 (1999).

  45. 45

    Pajusola, K., Aprelikova, O., Armstrong, E., Morris, S. & Alitalo, K. Two human FLT4 receptor tyrosine kinase isoforms with distinct carboxyterminal tails are produced by alternative processing of primary transcripts. Oncogene 8, 2931–2937 (1993).

  46. 46

    Joukov, V. et al. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J. 16, 3898– 3911 (1997).

  47. 47

    Brünger, A.T. X-PLOR (Version 3.1) Manual (The Howard Hughes Medical Institute and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, 1992).

Download references

Acknowledgements

We thank J. Esman for clinical evaluation of the families; the family members for participation; and S. Karttunen, T. Tainola, A. Parsons, P. Ylikantola and M. Helantera for technical assistance. This study was supported by grants from the Finnish Cancer Organization, Finnish Cultural Foundation, Emil Aaltonen Foundation, Ida Montini Foundation, the Finnish Academy and the European Union (Biomed grant no. PL 963380), N.I.H. grant no. HD35174 and a grant from the D.T. Watson Rehabilitation Hospital.

Author information

Correspondence to Robert E. Ferrell.

Rights and permissions

Reprints and Permissions

About this article

Further reading