X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions

Article metrics

Abstract

X-linked recessive dyskeratosis congenita (DKC) is a rare bone-marrow failure disorder linked to Xq28. Hybridization screening with 28 candidate cDNAs resulted in the detection of a 3′ deletion in one DKC patient with a cDNA probe (derived from XAP101). Five different missense mutations in five unrelated patients were subsequently identified in XAP101, indicating that it is the gene responsible for X-linked DKC (DKC1). DKC1 is highly conserved across species barriers and is the orthologue of rat NAP57 and Saccharomyces cerevisiae CBF5. The peptide dyskerin contains two TruB pseudouridine (Ψ) synthase motifs, multiple phosphorylation sites, and a carboxy-terminal lysine-rich repeat domain. By analogy to the function of the known dyskerin orthologues, involvement in the cell cycle and nucleolar function is predicted for the protein.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Connor, J.M., Gatherer, D., Gray, F.C., Pirrit, L.A. & Affara, N.A. Assignment of the gene for dyskeratosis congenita to Xq28. Hum. Genet. 72, 348–351 (1986).

  2. 2

    Arngrimsson, R., Dokal, I., Luzzatto, L. & Connor, J.-M. Dyskeratosis congenita: three additional families show linkage to a locus in Xq28. J. Med. Genet. 30, 618–619 (1993).

  3. 3

    Drachtman, R.A. & Alter, B.P. Dyskeratosis congenita: Clinical and genetic heterogeneity: Report of a a new case and review of the literature. Am. J. Pediatr. Hemat Oncol. 14, 297–304 (1992).

  4. 4

    Dokal, I. Dyskeratosis congenita: An inherited bone marrow failure syndrome. Br. J. Haematol. 92, 775–779 (1996).

  5. 5

    Dokal, I. & Luzzatto, L., Congenita is a chromosomal instability disorder. Leukemia and Lymphoma 15, 1–7 (1994).

  6. 6

    Coulthard, S., Chase, A., Pickard, J., Goldman, J. & Dokal, I. Chromosomal breakage analysis in dyskeratosis congenita peripheral blood lymphocytes. Br. J. Heamat. 97, 51–12 (1997).

  7. 7

    Dokal, I. et al. Dyskeratosis Congenita fibroblasts are abnormal and have unbalanced chromosomal rearrangements. Blood 80, 3090–3096 (1992).

  8. 8

    Devriendt, K. et al. Skewed X-chromosome inactivation in female carriers of Dyskeratosis Congenita. Am. J. Hum. Genet. 60, 581–587 (1997).

  9. 9

    Vulliamy, T.J., Knight, S.W., Dokal, I. & Mason, P.J., X-inactivation in carriers of X-linked dyskeratosis congenita. Blood 90, 2213–2216 (1997).

  10. 10

    Knight, S.W. et al. Fine mapping of the dyskeratosis congenita locus in Xq28. J. Med. Genet. 33, 993–995 (1996).

  11. 11

    Bione, S. et al. Transcriptional organisation of a 450-kb region of the human X chromosome in Xq28. Proc. Natl. Acad. Sci. USA 90, 10977–10981 (1993).

  12. 12

    Sedlacek, Z. et al. Construction of a transcription map of a 300 kb region around the human G6PD locus by direct cDNA selection. Hum. Mol. Genet. 11, 1865–1869 (1993).

  13. 13

    Coy, J.F., Kioschis, P., Sedlacek, Z. & Poustka, A. Identification of tissue specific expressed sequences in Xq27. 3 to Xqter. Mammalian Genome 5, 131–137 (1994).

  14. 14

    Heiss, M.S., Rogner, U.C., Kioschis, P., Korn, B. & Poustka, A. Transcriptional mapping in a 700 kb region around the DXS52 locus in Xq28: Isolation of six novel transcripts and a novel ATPase isoform (hPMCAS). Genome Res. 6, 478–491 (1996).

  15. 15

    Rogner, U.C. et al. Transcriptional analysis of the candidate region for incontinentia pigmenti (IP2) in Xq28. Genome Res. 6, 922–934 (1996).

  16. 16

    Chen, E.Y. et al. Long-range sequence analysis in Xq28: Thirteen known and six candidate genes in 219.4 kb of high GC DNA between the RCP/GCP and G6PD loci. Hum. Mol. Genet. 5, 659–668 (1996).

  17. 17

    Bione, S. et al. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nature Genet. 8, 323–327 (1994).

  18. 18

    Bione, S. et al. A novel X-linked gene, G4.5, is responsible for Barth Syndrome. Nature Genet. 12, 385–389 (1996).

  19. 19

    Coy, J.F. et al. Molecular cloning of tissue-specific transcripts of a transketolase related gene: Implications for the evolution of new vertebrate genes. Genomics 32, 309–316 (1996).

  20. 20

    Das, S., Metzenberg, A., Pai, G.S. & Gitschier, J. Mutational analysis of the biglycan gene excludes it as a candidate for X-linked dominant chondrodysplasia punctata, dyskeratosis congenita, and incontinentia pigmenti. Am. J. Hum. Genet. 54, 922–925 (1994).

  21. 21

    Heiss, N.S. et al. Genomic structure of a novel LIM domain gene in Xq28 and comparisons with the orthologous murine transcript. Genomics 43, 329–338 (1997).

  22. 22

    Heiss, N.S. & Poustka, A. Genomic structure of a novel chloride channel gene, CLIC2, in Xq28. Genomics 45, 224–228 (1997).

  23. 23

    Kenwrick, S., Levinson, B., Taylor, S., Shapiro, A. & Gitschier, J. Isolation and sequence of two genes associated with a CpG island 5′ of the factor VIII gene. Hum. Mol. Genet. 1, 179–186 (1992).

  24. 24

    Parrish, J.E. et al. A muscle-specific DNase l-like gene in human Xq28. Hum. Mol. Genet. 9, 1557–1564 (1995).

  25. 25

    Heiss, N.S., Korn, B., Rogner, U.C. & Poustka, A. Generation of specific exon trap probes from YACs by using Alu long-range PCR products. Methods Mol. Cell. Biol. 5, 337–344 (1995).

  26. 26

    Metzenberg, A.B. & Gitschier, J. The gene encoding the palmitoylated erythrocyte membrane protein, p55, originates at the CpG island 3′ of the factor VIII gene. Hum. Mol. Genet. 1, 97–101 (1992).

  27. 27

    Rogner, U. et al. A YAC clone map spanning 7.5 megabases of human chromosome band Xq28. Hum. Mol. Gen. 3, 2137–2146 (1994).

  28. 28

    Korn, B. et al. A strategy for the selection of transcribed sequences in the Xq28 region. Hum. Mol. Genet. 1, 235–242 (1992).

  29. 29

    Becker, H.F., Motorin, Y., Planta, R.J. & Grosjean, H. The yeast gene YNL292w encodes a pseudouridine synthase (Pus4) catalyzing the formation the formation of ψ55 in both mitochondrial and cytoplasmic tRNAs. Nucleic Acids Res. 25, 4493–4499 (1997).

  30. 30

    Meier, U.T. & Blobel, G. NAP57, a mammalian nucleolar protein with a putative homolog in yeast and bacteria. J. Cell Biol. 127, 1505–1514 (1994).

  31. 31

    Dixon, J. et al. Positional cloning of a gene involved in the pathogenesis of Treacher Collins Syndrome. Nature Genet. 12, 130–136 (1996).

  32. 32

    Jiang, W., Middleton, K., Yoon, H.-J., Fouquet, C. & Carbon, J. An essential yeast protein, CBFSp, binds in vitro to centromeres and microtubules. Mol. Cell. Biol. 13, 4884–4893 (1993).

  33. 33

    Cadwell, C., Yoon, H.-J., Zebrarjadian, Y. & Carbon, J. The yeast nucleolar protein CbfSp is involved in rRNA biosynthesis and interacts genetically with the RNA polymerase I transcription factor RRN3. Mol. Cell. Biol. 17, 6175–6183 (1997).

  34. 34

    Meier, U.T., Blobel, G. Nopp140 shuttles on tracks between nucleoplasm and cytoplasm. Cell 70, 127–138 (1992).

  35. 35

    Koonin, E.V. Pseudouridine synthases: four families of enzymes containing a putative uridine-binding motif also conserved in dUTPases and dCTP deaminases. Nucleic Acids Res. 24, 2411–2415 (1996).

  36. 36

    Winkler, A.A., Bobok, A., Zonneveld, B.J.M., Steensma, H.Y. & Hooykaas, P.J.J. The lysine-rich C-terminal repeats of the centromere-binding factor 5 (Cbf5) of Kluyveromyces lactis are not essential for function. Yeast, in press.

  37. 37

    Gautier, T., Bergès, T., Tollervey, D. & Hurt, E. Nucleolar KKE/D repeat proteins Nop56p and Nop58p interact with Noplp and are required for ribosome biogenesis. Mol. Cell. Biol. 17, 7088–7098 (1997).

  38. 38

    Wilgenbus, K.K., Mincheva, A., Korn, B., Lichter, P. & Poustka, A. IRS-long range (LR) PCR: A simple method for efficient amplification of human genomic DNA from complex sources. Methods Mol. Cell Biol. 5, 214–221 (1995).

  39. 39

    Church, D.M. et al. Isolation of genes from complex sources of mammalian genomic DNA using exon amplification. Nature Genet. 6, 98–10–. (1994).

  40. 40

    Frohman, M.A. Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: thermal RACE. Methods Enzymol. 218, 340–56 (1993).

  41. 41

    Cross, N.C.P. et al. Minimal residual disease after allogeneic bone marrow transplantation for chronic myeloid leukaemia in first chronic phase: correlations with acute graft-versus-host disease and relapse. Br. J. Haemat. 84, 67–74 (1993).

Download references

Author information

Correspondence to Inderjeet Dokal.

Rights and permissions

Reprints and Permissions

About this article

Further reading