Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions

Abstract

X-linked recessive dyskeratosis congenita (DKC) is a rare bone-marrow failure disorder linked to Xq28. Hybridization screening with 28 candidate cDNAs resulted in the detection of a 3′ deletion in one DKC patient with a cDNA probe (derived from XAP101). Five different missense mutations in five unrelated patients were subsequently identified in XAP101, indicating that it is the gene responsible for X-linked DKC (DKC1). DKC1 is highly conserved across species barriers and is the orthologue of rat NAP57 and Saccharomyces cerevisiae CBF5. The peptide dyskerin contains two TruB pseudouridine (Ψ) synthase motifs, multiple phosphorylation sites, and a carboxy-terminal lysine-rich repeat domain. By analogy to the function of the known dyskerin orthologues, involvement in the cell cycle and nucleolar function is predicted for the protein.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Connor, J.M., Gatherer, D., Gray, F.C., Pirrit, L.A. & Affara, N.A. Assignment of the gene for dyskeratosis congenita to Xq28. Hum. Genet. 72, 348–351 (1986).

    Article  CAS  Google Scholar 

  2. Arngrimsson, R., Dokal, I., Luzzatto, L. & Connor, J.-M. Dyskeratosis congenita: three additional families show linkage to a locus in Xq28. J. Med. Genet. 30, 618–619 (1993).

    Article  CAS  Google Scholar 

  3. Drachtman, R.A. & Alter, B.P. Dyskeratosis congenita: Clinical and genetic heterogeneity: Report of a a new case and review of the literature. Am. J. Pediatr. Hemat Oncol. 14, 297–304 (1992).

    Article  CAS  Google Scholar 

  4. Dokal, I. Dyskeratosis congenita: An inherited bone marrow failure syndrome. Br. J. Haematol. 92, 775–779 (1996).

    Article  CAS  Google Scholar 

  5. Dokal, I. & Luzzatto, L., Congenita is a chromosomal instability disorder. Leukemia and Lymphoma 15, 1–7 (1994).

    Article  CAS  Google Scholar 

  6. Coulthard, S., Chase, A., Pickard, J., Goldman, J. & Dokal, I. Chromosomal breakage analysis in dyskeratosis congenita peripheral blood lymphocytes. Br. J. Heamat. 97, 51–12 (1997).

    Google Scholar 

  7. Dokal, I. et al. Dyskeratosis Congenita fibroblasts are abnormal and have unbalanced chromosomal rearrangements. Blood 80, 3090–3096 (1992).

    CAS  PubMed  Google Scholar 

  8. Devriendt, K. et al. Skewed X-chromosome inactivation in female carriers of Dyskeratosis Congenita. Am. J. Hum. Genet. 60, 581–587 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Vulliamy, T.J., Knight, S.W., Dokal, I. & Mason, P.J., X-inactivation in carriers of X-linked dyskeratosis congenita. Blood 90, 2213–2216 (1997).

    CAS  PubMed  Google Scholar 

  10. Knight, S.W. et al. Fine mapping of the dyskeratosis congenita locus in Xq28. J. Med. Genet. 33, 993–995 (1996).

    Article  CAS  Google Scholar 

  11. Bione, S. et al. Transcriptional organisation of a 450-kb region of the human X chromosome in Xq28. Proc. Natl. Acad. Sci. USA 90, 10977–10981 (1993).

    Article  CAS  Google Scholar 

  12. Sedlacek, Z. et al. Construction of a transcription map of a 300 kb region around the human G6PD locus by direct cDNA selection. Hum. Mol. Genet. 11, 1865–1869 (1993).

    Article  Google Scholar 

  13. Coy, J.F., Kioschis, P., Sedlacek, Z. & Poustka, A. Identification of tissue specific expressed sequences in Xq27. 3 to Xqter. Mammalian Genome 5, 131–137 (1994).

    Article  CAS  Google Scholar 

  14. Heiss, M.S., Rogner, U.C., Kioschis, P., Korn, B. & Poustka, A. Transcriptional mapping in a 700 kb region around the DXS52 locus in Xq28: Isolation of six novel transcripts and a novel ATPase isoform (hPMCAS). Genome Res. 6, 478–491 (1996).

    Article  CAS  Google Scholar 

  15. Rogner, U.C. et al. Transcriptional analysis of the candidate region for incontinentia pigmenti (IP2) in Xq28. Genome Res. 6, 922–934 (1996).

    Article  CAS  Google Scholar 

  16. Chen, E.Y. et al. Long-range sequence analysis in Xq28: Thirteen known and six candidate genes in 219.4 kb of high GC DNA between the RCP/GCP and G6PD loci. Hum. Mol. Genet. 5, 659–668 (1996).

    Article  CAS  Google Scholar 

  17. Bione, S. et al. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nature Genet. 8, 323–327 (1994).

    Article  CAS  Google Scholar 

  18. Bione, S. et al. A novel X-linked gene, G4.5, is responsible for Barth Syndrome. Nature Genet. 12, 385–389 (1996).

    Article  CAS  Google Scholar 

  19. Coy, J.F. et al. Molecular cloning of tissue-specific transcripts of a transketolase related gene: Implications for the evolution of new vertebrate genes. Genomics 32, 309–316 (1996).

    Article  CAS  Google Scholar 

  20. Das, S., Metzenberg, A., Pai, G.S. & Gitschier, J. Mutational analysis of the biglycan gene excludes it as a candidate for X-linked dominant chondrodysplasia punctata, dyskeratosis congenita, and incontinentia pigmenti. Am. J. Hum. Genet. 54, 922–925 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Heiss, N.S. et al. Genomic structure of a novel LIM domain gene in Xq28 and comparisons with the orthologous murine transcript. Genomics 43, 329–338 (1997).

    Article  CAS  Google Scholar 

  22. Heiss, N.S. & Poustka, A. Genomic structure of a novel chloride channel gene, CLIC2, in Xq28. Genomics 45, 224–228 (1997).

    Article  CAS  Google Scholar 

  23. Kenwrick, S., Levinson, B., Taylor, S., Shapiro, A. & Gitschier, J. Isolation and sequence of two genes associated with a CpG island 5′ of the factor VIII gene. Hum. Mol. Genet. 1, 179–186 (1992).

    Article  CAS  Google Scholar 

  24. Parrish, J.E. et al. A muscle-specific DNase l-like gene in human Xq28. Hum. Mol. Genet. 9, 1557–1564 (1995).

    Article  Google Scholar 

  25. Heiss, N.S., Korn, B., Rogner, U.C. & Poustka, A. Generation of specific exon trap probes from YACs by using Alu long-range PCR products. Methods Mol. Cell. Biol. 5, 337–344 (1995).

    Google Scholar 

  26. Metzenberg, A.B. & Gitschier, J. The gene encoding the palmitoylated erythrocyte membrane protein, p55, originates at the CpG island 3′ of the factor VIII gene. Hum. Mol. Genet. 1, 97–101 (1992).

    Article  CAS  Google Scholar 

  27. Rogner, U. et al. A YAC clone map spanning 7.5 megabases of human chromosome band Xq28. Hum. Mol. Gen. 3, 2137–2146 (1994).

    Article  CAS  Google Scholar 

  28. Korn, B. et al. A strategy for the selection of transcribed sequences in the Xq28 region. Hum. Mol. Genet. 1, 235–242 (1992).

    Article  CAS  Google Scholar 

  29. Becker, H.F., Motorin, Y., Planta, R.J. & Grosjean, H. The yeast gene YNL292w encodes a pseudouridine synthase (Pus4) catalyzing the formation the formation of ψ55 in both mitochondrial and cytoplasmic tRNAs. Nucleic Acids Res. 25, 4493–4499 (1997).

    Article  CAS  Google Scholar 

  30. Meier, U.T. & Blobel, G. NAP57, a mammalian nucleolar protein with a putative homolog in yeast and bacteria. J. Cell Biol. 127, 1505–1514 (1994).

    Article  CAS  Google Scholar 

  31. Dixon, J. et al. Positional cloning of a gene involved in the pathogenesis of Treacher Collins Syndrome. Nature Genet. 12, 130–136 (1996).

    Article  Google Scholar 

  32. Jiang, W., Middleton, K., Yoon, H.-J., Fouquet, C. & Carbon, J. An essential yeast protein, CBFSp, binds in vitro to centromeres and microtubules. Mol. Cell. Biol. 13, 4884–4893 (1993).

    Article  CAS  Google Scholar 

  33. Cadwell, C., Yoon, H.-J., Zebrarjadian, Y. & Carbon, J. The yeast nucleolar protein CbfSp is involved in rRNA biosynthesis and interacts genetically with the RNA polymerase I transcription factor RRN3. Mol. Cell. Biol. 17, 6175–6183 (1997).

    Article  CAS  Google Scholar 

  34. Meier, U.T., Blobel, G. Nopp140 shuttles on tracks between nucleoplasm and cytoplasm. Cell 70, 127–138 (1992).

    Article  CAS  Google Scholar 

  35. Koonin, E.V. Pseudouridine synthases: four families of enzymes containing a putative uridine-binding motif also conserved in dUTPases and dCTP deaminases. Nucleic Acids Res. 24, 2411–2415 (1996).

    Article  CAS  Google Scholar 

  36. Winkler, A.A., Bobok, A., Zonneveld, B.J.M., Steensma, H.Y. & Hooykaas, P.J.J. The lysine-rich C-terminal repeats of the centromere-binding factor 5 (Cbf5) of Kluyveromyces lactis are not essential for function. Yeast, in press.

  37. Gautier, T., Bergès, T., Tollervey, D. & Hurt, E. Nucleolar KKE/D repeat proteins Nop56p and Nop58p interact with Noplp and are required for ribosome biogenesis. Mol. Cell. Biol. 17, 7088–7098 (1997).

    Article  CAS  Google Scholar 

  38. Wilgenbus, K.K., Mincheva, A., Korn, B., Lichter, P. & Poustka, A. IRS-long range (LR) PCR: A simple method for efficient amplification of human genomic DNA from complex sources. Methods Mol. Cell Biol. 5, 214–221 (1995).

    Google Scholar 

  39. Church, D.M. et al. Isolation of genes from complex sources of mammalian genomic DNA using exon amplification. Nature Genet. 6, 98–10–. (1994).

    Article  CAS  Google Scholar 

  40. Frohman, M.A. Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: thermal RACE. Methods Enzymol. 218, 340–56 (1993).

    Article  CAS  Google Scholar 

  41. Cross, N.C.P. et al. Minimal residual disease after allogeneic bone marrow transplantation for chronic myeloid leukaemia in first chronic phase: correlations with acute graft-versus-host disease and relapse. Br. J. Haemat. 84, 67–74 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inderjeet Dokal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heiss, N., Knight, S., Vulliamy, T. et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 19, 32–38 (1998). https://doi.org/10.1038/ng0598-32

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0598-32

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing