Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mouse model for Prader-Willi syndrome imprinting-centre mutations

Abstract

Imprinting in the 15q11–q13 region involves an ‘imprinting centre’ (IC), mapping in part to the promoter and first exon of SNRPN. Deletion of this IC abolishes local paternally derived gene expression and results in Prader-Willi syndrome (PWS). We have created two deletion mutations in mice to understand PWS and the mechanism of this IC. Mice harbouring an intragenic deletion in Snrpn are phenotypically normal, suggesting that mutations of SNRPN are not sufficient to induce PWS. Mice with a larger deletion involving both Snrpn and the putative PWS-IC lack expression of the imprinted genes Zfp127 (mouse homologue of ZNF127), Ndn and Ipw, and manifest several phenotypes common to PWS infants. These data demonstrate that both the position of the IC and its role in the coordinate expression of genes is conserved between mouse and human, and indicate that the mouse is a suitable model system in which to investigate the molecular mechanisms of imprinting in this region of the genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Holm, V.A. et al. Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics 91, 398–402 (1993).

    CAS  PubMed  Google Scholar 

  2. Clayton-Smith, J. & Pembrey, M.E. Angelman syndrome. Med. Genet. 29, 412–415 (1992).

    Article  CAS  Google Scholar 

  3. Nicholls, R.D. et al. Restriction fragment length polymorphisms within proximal 15q and their use in molecular cytogenetics and the Prader-Willi syndrome. Am. J. Med. Genet. 33, 66–77 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Robinson, W.P. et al. Molecular, cytogenetic, and clinical investigations of Prader-Willi syndrome patients. Am. J. Hum. Genet. 49, 1219–1234 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mascari, M.J. et al. The frequency of uniparental disomy in Prader-Willi syndrome. Implications for molecular diagnosis. N. Engl. J. Med. 326, 1599–1607 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nicholls, R.D., Knoll, J.H., Butler, M.G., Karam, S. & Lalande, M. Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome. Nature 342, 281–285 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Knoll, J.H. et al. Angelman and Prader-Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion. Am. J. Med. Genet. 32, 285–290 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Magenis, R.E. et al. Comparison of the 15q deletions in Prader-Willi and Angelman syndromes: specific regions, extent of deletions, parental origin, and clinical consequences. Am. J. Med. Genet. 35, 333–349 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Williams, C.A. et al. Maternal origin of 15q11-13 deletions in Angelman syndrome suggests a role for genomic imprinting. Am. J. Med. Genet. 35, 350–353 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Malcolm, S. et al. Uniparental paternal disomy in Angelman's syndrome. Lancet 337, 694–697 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Nicholls, R.D., Pai, G.S., Gottlieb, W. & Cantu, E.S. Paternal uniparental disomy of chromosome 15 in a child with Angelman syndrome. Ann. Neurol. 32, 512–518 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Kishino, T., Lalande, M. & Wagstaff, J. UBE3A/E6-AP mutations cause Angelman syndrome. Nature Genet. 15, 70–73 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Matsuura, T. et al. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nature Genet. 15, 74–77 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Nicholls, R.D. New insights reveal complex mechanisms involved in genomic imprinting. Am. J. Hum. Genet. 54, 733–740 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ozcelik, T. et al. Small nuclear ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader-Willi syndrome critical region. Nature Genet. 2, 265–269 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Glenn, C.C., Porter, K.A., Jong, M.T., Nicholls, R.D. & Driscoll, D.J. Functional imprinting and epigenetic modification of the human SNRPN gene. Hum. Mol. Genet. 2, 2001–2005 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Reed, M.L. & Leff, S.E. Maternal imprinting of human SNRPN, a gene deleted in Prader-Willi syndrome. Nature Genet. 6, 163–167 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. MacDonald, H.R. & Wevrick, R. The necdin gene is deleted in Prader-Willi syndrome and is imprinted in human and mouse. Hum. Mol. Genet. 6, 1873–1878 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Wevrick, R., Kerns, J.A. & Francke, U. Identification of a novel paternally expressed gene in the Prader-Willi syndrome region. Hum. Mol. Genet. 3, 1877–1882 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Sutcliffe, J.S. et al. Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nature Genet. 8, 52–58 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Reis, A. et al. Imprinting mutations suggested by abnormal DNA methylation patterns in familial Angelman and Prader-Willi syndromes. Am. J. Hum. Genet. 54, 741–747 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Buiting, K. et al. Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nature Genet. 9, 395–400 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Saitoh, S. et al. Minimal definition of the imprinting center and fixation of chromosome 15q11-q13 epigenotype by imprinting mutations. Proc. Natl. Acad. Sci. USA 93, 7811–7815 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hermann, H. et al. snRNP Sm proteins share two evolutionary conserved sequence motifs whiah are involved in Sm protein-protein interactions. EMBO J. 14, 2076–2088 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Szabo, P. & Mann, J.R. Expression and methylation of imprinted genes during in vitro differentiation of mouse parthenogenetic and androgenetic embryonic stem cell lines. Development 120, 1651–1660 (1994).

    CAS  PubMed  Google Scholar 

  26. Hogan, B., Beddington, R., Constantini, F. & Lacy, E. Manipulating the mouse embryo. A laboratory manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1994).

    Google Scholar 

  27. Steitz, J.A. et al. Function of the abundant U-snRNPs. In Structure and Function of Major and Minor Small Nuclear Ribonuclear Ribonucleoprotein Particles (ed. Birnstiel, M.L.) 115–154 (Springer-Verlag, New York, 1990).

    Chapter  Google Scholar 

  28. Lerner, M.C. & Steitz, J.A. Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosis. Proc. Natl. Acad. Sci. USA 76, 5495–5499 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McAllister, G., Amara, S.G. & Lerner, M.R. Tissue-specific expression and cDNA cloning of small nuclear ribonucleoprotein-associated polypeptide N. Proc. Natl. Acad. Sci. USA 85, 5296–5300 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McAllister, G., Roby-Shemkovitz, A., Amara, S.G. & Lerner, M.R. cDNA sequence of the rat U snRNP-associated protein N: Description of a potential Sm epitope. EMBO J. 8, 1177–1181 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, S., Klein, E.S., Russo, A.F., Simmons, D.M. & Rosenfeld, M.G. Isolation of cDNA clones encoding small nuclear ribonucleoparticle-associated proteins with different tissue specificities. Proc. Natl. Acad. Sci. USA 86, 9778–9782 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schmauss, C. & Lerner, M.R. The closely related small nuclear ribonucleoprotein polypeptides N and B/B′ are distinguishable by antibodies as well as by differences in their mRNAs and gene structure. J. Biol. Chem. 265, 10733–10739 (1990).

    CAS  PubMed  Google Scholar 

  33. Schmauss, C., Brines, M.L. & Lerner, M.R. The gene encoding the small nuclear ribonucleoprotein-associated protein N is expressed at high levels in neurons. J. Biol. Chem. 267, 8521–8529 (1992).

    CAS  PubMed  Google Scholar 

  34. Sun, Y. et al. Breakage in the Snrpn locus in a balanced 46,XY,t(15;19) Prader-Willi syndrome patient. Hum. Mol. Genet. 5, 517–524 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Maruyama, K., Usami, M., Aizawa, T. & Yoshikawa, K. A novel brain-specific mRNA encoding nuclear protein (Necdin) expressed in neurally differentiated embryonal carcinoma cells. Biochem. Biophys. Res. Comm. 178, 291–296 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Uetsuki, T., Takagi, K., Sugiura, H. & Yoshikawa, K. Structure and expression of the mouse Necdin gene. J. Biol. Chem. 271, 918–924 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Cattanach, B.M. et al. A candidate mouse model for Prader-Willi syndrome which shows an absence of Snrpn expression. Nature Genet. 2, 270–274 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Dittrich, B. et al. Imprint switching on human chromosome 15 may involve alternative transcripts of the SNRPN gene. Nature Genet. 14, 163–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Swiatek, P.J. & Gridley, T. Perinatal lethality and defects in hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox20. Genes Dev. 7, 2071–2084 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Robertson, E.J. Embryo-derived stem cells. In Teratocarcinomas and Embryonic Stem Cells. (ed. Robertson, E.J.) 71–112 (IRL Press, Oxford, 1987).

    Google Scholar 

  41. Laird, P.W. et al. Simplified mammalian DNA isolation procedure. Nucleic Acids Res. 19, 4293–4294 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Church, G.M. & Gilbert, W. The genomic sequencing technique. Prog. Clin. Biol. Res. 177, 17–21 (1985).

    CAS  PubMed  Google Scholar 

  43. Rubenstein, J.L. et al. Subtractive hybridization system using single-stranded phagemids with directional inserts. Nucleic Acids Res. 18, 4833–4842 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wevrick, R. & Francke, U. An imprinted mouse transcript homologous to the human Imprinted in Prader-Willi syndrome (IPW) gene. Hum. Mol. Genet. 6, 325–332 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilynn I. Brannan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, T., Adamson, T., Resnick, J. et al. A mouse model for Prader-Willi syndrome imprinting-centre mutations. Nat Genet 19, 25–31 (1998). https://doi.org/10.1038/ng0598-25

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0598-25

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing