Abstract
Evolutionary theory predicts substantial interspecific and intraspecific differences in the proximal mechanisms of ageing. Our goal here is to seek evidence for common (‘public’) mechanisms among diverse organisms amenable to genetic analysis. Oxidative damage is a candidate for such a public mechanism of ageing. Long-lived strains are relatively resistant to different environmental stresses. The extent to which these stresses produce oxidative damage remains to be established.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Medawar, P.B. Old age and natural death. Modern Quarterly. 1, 30–56 (1946).
Medawar, P.B. An Unsolved Problem of Biology (H.K. Lewis, London, 1952).
Hamilton, W.D. The moulding of senescence by natural selection. J. Theor. Biol. 12, 12–45 (1966).
Charlesworth, B. Evolution in Age-Structured Populations, 2nd Edn. (Cambridge University Press, Cambridge, 1994).
Williams, G.C., Pleiotropy, natural selection, and the evolution of senescence. Evolution. 11, 398–411 (1957).
Rose, M.R. & Charlesworth, B. A test of evolutionary theories of senescence. Nature. 287, 141–142 (1980).
Hughes, K.A. & Charlesworth, B. A genetic analysis of senescence in Drosophila. Nature 367, 64–66 (1994).
Wilson, P.W.F. et al. Apolipoprotein E alleles, dyslipidemia, and coronary heart diseasa. JAMA. 272, 1666–1671 (1994).
Saunders, A.M. et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology 43, 1467–1472 (1993).
Rose, M.R. Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38, 1004–1010 (1984).
Luckinbill, L.S., Arking, R., Clare, M.J., Cirocco, W.C. & Buck, S.A. Selection for delayed senescence in Drosophila melanogaster. Evolution 38, 996–1003 (1984).
Zwaan, B., Bijlmsa, R. & Hoekstra, R.F. Direct selection on life span in Drosophila melanogaster. Evolution 49, 649–659 (1995a).
Partridge, L. & Fowler, K. Direct and correlated responses to selection on age at reproduction in Drosophila melanogaster. Evolution 46, 76–91 (1992).
Shook, D.R., Brooks, A. & Johnson, T.E. Mapping quantitative trait specifying hermaphrodite survival or self fertility in the nematode Caenorhabditis elegans. Genetics 142, 801–17 (1996).
Albin, R.L. Antagonistic pleiotropy, mutation accumulation, and human genetic disease. in Genetics and Evolution of Aging.(Eds Rose, M.R. & Finch, C.E.) 307–314 (Kluwer Academic Publishers, Amsterdam, 1994).
Finch, C.E. & Rose, M.R. Hormones and the physiological architecture of life history evolution. Q. Rev. Biol. 70, 1–52 (1995).
Kirkwood, T.B.L. The disposable soma theory of aging. in Genetic Effects on Aging II(ed.Harrison, D.E.) 9–19 (Telford Press, Caldwell, NJ, 1990).
Wilding, G. Endocrine control of prostate cancer. Cancer Surv. 23, 43–62 (1995).
Adams, M.R., Williams, J.K. & Kaplan, J.R. Effects of androgens on coronary artery aterosclerosis and atherosclerosis-related impairment of vascular responsiveness. Arterioscl. Thromb. Vasc. Biol. 15, 562–570 (1995).
Grossman, C.J. Interactions between the gonadal steroids and the immune system. Science 227, 257–261 (1985).
Cerami, A. Hypothesis: glucose as a mediator of aging. J. Am. Geriatr. Soc. 33, 626–634 (1985).
Monnier, V.M., Sell, D.R., Ramanakoppa, J. & S. Miyata, Mechanisms of protection against damage mediated by the Maillard reaction in aging. Gerontol. 37, 152–165 (1991).
Dickman, C.R. & Braithwaite, R.W. Postmating mortality of males in the dasyurid marsupials, Dasyurus and Parantechinus. J. Mamm. 73, 143–147 (1992).
Austad, S.N. Retarded senescence in an insular population of Virginia (Didelphis virginiana) opossums. J. Zool. Lond. 229, 695–708 (1993).
Kenyon, C. Ponce d-elegans: genetic quest for the fountain of youth. Cell. 84, 501–504 (1996).
Kirkwood, T.B.L. & Cremer, T. Cytogerontology since 1881: a reappraisal of August Weismann and a review of modern progress. Hum. Genet. 60, 101–121 (1982).
Rothstein, M. Biochemical Approaches to Aging. (Academic Press, New York, 1982).
Van Remmen, H., Ward, W.F., Sabia, R.V. & Richardson, A. Gene expression and protein degradation. in Handbook of Physiology (ed Masoro, E.J.) 171–234 (Oxford University Press, New York, 1995).
Swisshelm, K., Disteche, C.M., Thorvaldsen, J., Nelson, A. & Salk, D. Age-related increase in methylation of ribosomal genes and inactivation of chromosome-specific rRNA gene clusters in mouse. Mutat. Res. 237, 131–146 (1990).
Sell, D.R. & Monnier, V.M. Aging of long-lived proteins: extracellular matrix (collagens, elastins, proteoglycans) and lens crystallins. in Aging (ed. Masoro, E.J.) (Oxford University Press, New York, 1995).
Harman, D. Free-radical theory of aging: increasing the functional life span. Ann. NY Acad. Sci. 717, 1–15 (1994).
Swartz, H.M. & Mäder, K. Free radicals in aging: theories, facts, and artifacts. in Molecular Aspects of Aging (eds Esser, K. & Martin, G.M.) (John Wiley & Sons Ltd., Chichester, England, 1995).
Stadtman, E.R. Protein oxidation and aging. Science 267, 1220–1224 (1992).
Newcomb, T.G. & Loeb, L.A. Oxidative DNA damage and mutagenesis. in DNA Damage and Repair (eds Nickoloff, J. & Hoekstra, M.) (Human Press, Totowa, New Jersey, 1996).
Shigenaga, M.K., Hagen, T.M. & Ames, B.N. Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. USA 91, 10771–10778 (1994).
Griffiths, A.J.F. Fungal senescence. Annu. Rev. Genet. 26, 351–372 (1992).
Osiewacz, H.D. Aging and genetic instabilities. in Molecular Aspects of Aging (eds Esser, K & Martin, G. M.) 29–44 (John Wiley and Sons, Chichester, 1995).
Jazwinski, S.M., Handbook of the Biology of Aging, 4th edn. (eds Rowe,J. W. & Schneider, E. L.) 39–54 (Academic Press, New York, 1996).
Munkres, K.D., Genetic coregulation of longevity and antioxienzymes in Neurospora crassa. Free Rad. Biol. Med. 8, 355–361 (1990).
Kennedy, B.K., Austriaco, N.R.,Jr, Zhang, J. & Guarente, L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell. 80, 485–496 (1995).
D'Mello, N.P. et al. Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J. Biol. Chem. 269, 15451–15459 (1994).
Jazwinski, S.M. The genetics of aging in the yeast Saccharomyces cerevisiae. Genetica. 91, 35–51 (1993).
Sun, J., Kale, S.P., Childress, A.M., Pinswasdi, C. & Jazwinski, S.M. Divergent roles of RAS1 and RAS2 in yeast longevity. J. Biol. Chem. 269, 18638–18645 (1994).
Kale, S.P. & Jazwinski, S.M. Differential response to UV stress and DNA damage during the yeast replicative life span. Dev. Genet. (in the press).
Bertrand, H. Senescence is coupled to induction of an oxidative phosphorylation stress response by mitochondrial MA mutations in Neurospora. Can. J. Bot. 73, S198–S204 (1995).
Munkres, K.D. & Furtek, C. A. Selection of conidial longevity mutants of Neurospora crassa.Mech. Ageing Dev. 25, 47–62 (1984).
Munkres, K.D. Selection and analysis of superoxide dismutase mutants of Neurospora. Free Rad. Biol. Med. 13, 305–318 (1992).
Longo, V.D., Gralla, E.B. & Valentine, J.S. Superoxide dismutase activity is essential for respiratory growth and stationary phase survival in Saccharomyces cerevisiae: in vivo mitochondrial production of toxic oxygen species under normal aeration. J. Biol. Chem. (in the press).
Wood, W.B. The Biology of Caenorhabditis elegans (Cold Spring Harbor Press, Cold Spring Harbor, New York, 1988).
Lithgow, G.J. in Handbook of the Biology of Aging, 4th Edn. (eds Rowe, J. W. & Schneider, E. L.) 55–73 (Academic Press, New York, 1996).
Johnson, T.E. & Hutchinson, E.W. Absence of strong heterosis for life span and other life history traits in Caenorhabditis elegans. Genetics 134, 465–474 (1993).
Friedman, D.B. & Johnson, T.E. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118, 75–86 (1988).
Friedman, D.B. & Johnson, T.E. Three mutants that extend both mean and maximum life span of the nematode, Caenorhabditis elegans, define the age-1 gene. J. Gerontol. Bio. Sci. 43, B102–B109 (1988).
Lithgow, G.J., White, T.M., Melov, S. & Johnson, T.E. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl. Acad. Sci. USA 92, 7540–7544 (1995).
Larsen, P.L. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 90, 8905–8909 (1993).
Vanfleteren, J.R. Oxidative stress and ageing in Caenorhabditis elegans. Biochem J. 292, 605–608 (1993).
Murakami, S. & Johnson, T.E. A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics (in the press).
Jurkiewicz, B.A. & Buettner, G.R. Ultraviolet light-induced free radical formation in skin: An electron paramagnetic resonance study. Photochem. PhotoBiol. 59, 1–4 (1994).
Godar, D.E., Thomas, D.P., Miller, S.A. & Lee, W. Long-wave length UVA radiation induced oxidative stress, cytoskeletal damage and hemolysis. Photochem. PhotoBiol. 57, 1018–1026 (1993).
Johnson, T.E. The increased life span of age-1 mutants in Caenorhabditis elegans results from lowering the Gompertz rate of aging. Science 249, 908–12 (1990).
Duhon, S.A. & Johnson, T.E. Movement as an index of vitality: comparing wild type and the age-1 mutant of Caenorhabditis elegans. J. Gerontol. Biol. Sci. 50, B254–B261 (1995).
Vanfleteren, J.F. & DeVreese, A. The gerontogenes age-1 and daf-2 determine metabolic rate potential in aging Caenorhabditis elegans. FASEB. J. 9, 1355–1361 (1996).
Melov, S., Lithgow, G.J., Fischer, D.R., Tedesco, P.M. & Johnson, T.E. Increased frequency of deletions in the mitochondrial genome with age of Caenorhabditis elegans. Nucl. Acids Res. 23, 1419–1425 (1995).
Riddle, D. The dauer larva, in The Nematode Caenorhabditis elegans. (ed. Wood, W. B.) 393–412 (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988).
Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C.elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).
Larsen, P.L., Albert, P.S. & Riddle, D.L. Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 139, 1567–1583 (1995).
Wong, A., Boutis, P. & Hekimi, S. Mutations in the clk-1 gene of Caenorhabditis elegans_affect developmental and behavioral timing. Genetics 139, 1247–1259 (1995).
Van Voorhies, W.A. Production of sperm reduces nematode lifespan. Nature 360, 456–458 (1992).
Gems, D. & Riddle, D.R. Longevity in Caenorhabditis elegans reduced by mating but not gamete production. Nature 379, 723–25 (1996).
Ebert, R.H. et al. Longevity-determining genes in Caenorhabditis elegans: chromosomal mapping of multiple noninteractive loci. Genetics 135, 1003–1010 (1993).
Wattiaux, J.M. Cumulative parental effects in Drosophila subobscura. Evolution 22, 406–421 (1968).
Wattiaux, J.M. Parental age effects in Drosophila pseudoobscura. Exp. Gerontol. 3, 55–61 (1968b).
Service, P.M., Hutchinson, E.W., MacKinley, M.D. & Rose, M.R. Resistance to environmental stress in Drosophila melanogaster selected for postponed senescence. Physiol. Zool. 58, 380–389 (1985).
Service, P.M. Physiological mechanisms of increased stress resistance in Drosophila melanogaster. Physiol. Zool. 60, 321–326 (1987).
Arking, R., Buck, S., Berrios, A., Dwyer, S. & Baker, G.T. Elevated paraquat resistance can be used as a bioassay for longevity in a genetically based long-lived strain of Drosophila. Dev. Genet. 12, 362–370 (1991).
Rose, M.R., Vu, L.N., Park, S.U. & Graves, J.L. Jr., Selection on stress resistance increases longevity in Drosophila melanogaster. Exp. Gerontol. 27, 241–250 (1992).
Hillesheim, E. & Stearns, S.C. Correlated responses in life-history traits to artificial selection for body weight in Drosophila melanogaster. Evolution 46, 745–752 (1992).
Zwaan, B., Bujlsma, R. & Hoekstra, R.F. Artificial selection for developmental time in Drosophila melanogaster in relation to the evolution of aging: direct and correlated responses. Evolution 49, 635–648 (1995).
Buck, S., Wells, R.A., Dudas, S.R., Baker, G.T. & Arking, R. Chromosomal localization and regulation of the longevity determinant genes in a selected strain of Drosophila melanogaster. Heredity 71, 11–22 (1993).
Dudas, S.P. & Arking, R. A coordinate upregulation of antioxidant gene activities is associated with the delayed onset of senescence in a long-lived strain of Drosophila. J. Gerontol. Biol. Sci. 50A, B117–B127 (1995).
Johnson, T.E., Lithgow, G.J., Murakami, S., Duhon, S.A. & Shook, D.R. Genetics of aging and longevity in lower organisms. in Cellular Aging and Cell Death (eds Holbrook, N. & Martin, G. R.) 1–17 (John Wiley and Sons, NY, 1996).
Hutchinson, E.W. & Rose, M.R. Quantitative genetic analysis of postponed aging in Drosophila melanogaster. in Genetic Effects of Aging II. (ed. Harrison, D.L.) 65–85 felford Press, Caldwell, NJ, 1990).
Fleming, J.E., Spicer, G.S., Garrison, R.C. & Rose, M.R. Two-dimensional protein electrophoretic analysis of postponed aging in Drosophila. Genetica 91, 183–198 (1993).
Clare, M.J. & Luckinbill, L.S. The effects of gene-environment interaction on the expression of longevity. Heredity 55, 19–26 (1985).
Service, P.M., Hutchinson, E.W. & Rose, M.R. Multiple genetic mechanisms for the evolution of senescence in Drosophila melanogaster. Evolution 42, 708–716 (1988).
Buck, S. et al. Larval regulation of adult longevity in a genetically-selected long-lived strain of Drosophila. Heredity 71, 23–32 (1993).
Hilliker, A.J., Dufy, B., Evans, D. & Phillips, J.P. Urate-null rosy mutants of Drosophila melanogaster are hypersensitive to oxygen stress. Proc. Natl. Acad. Sci. USA 89, 4343–4347 (1992).
Griswold, C.M., Matthews, A.L., Bewley, K.E. & Mahaffey, J.W. Molecular characterization and rescue of acatalasemic mutants of Drosophila melanogaster. Genetics 134, 781–788 (1993).
Orr, W.C. & Sohal, R.C. Extension of life span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263, 1128–1130 (1994).
Orr, W.C. & Sohal, R.C. The effects of catalase gene overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch. Biochem. Biophys. 297, 35–41 (1992).
Orr, W.C. & Sohal, R.C. Effects of Cu-Zn superoxide dismutase overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch. Biochem. Biophys. 301, 34–40 (1993).
Masoro, E.J. FRAR course on laboratory approaches to aging. Nutrition, including diet restriction, in mammals. Aging. 5, 269–275 (1993).
Gelman, R., Watson, A., Bronson, R. & Yunis, E. Murine chromosomal regions correlated with longevity. Genetics 118, 693–704 (1988).
Covelli, V. et al. Inheritance of immune responsiveness, life span, and disease incidence in interline crosses of mice selected for high or low multispecific antibody production. J. Immunol. 142, 1224–1234 (1989).
Puel, A., Groot, P.C., Lathrop, M.G., Demant, P. & Mouton, D. Mapping of genes controlling quantitative antibody production in Biozzi mice. J. Immunol. 154, 5799–5805 (1995).
Lander, E. & Kruglyak, L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet. 11, 241–247 (1995).
Mote, P.L., Grizzle, J.M., Walford, R.L. & Spindler, S.R. Aging alters hepatic expression of insulin receptor and c-jun mRNA in the mouse. Mutat. Res. 256, 7–12 (1991).
Yu, B.P. Antioxidant action of dietary restriction in the aging process. J. Nutr. Sci. Vitaminol. Tokyo. 39, S75–S83 (1993).
Sohal, R.S., Ku, H.H., Agarwal, S., Forster, M.J. & Lal, H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech. Ageing Dev. 74, 121–133 (1994).
Sohal, R.S., Agarwal, S., Candas, M., Forster, M.J. & Lal, H. Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice. Mech. Ageing Dev. 76, 215–224 (1994).
Hass, B.S., Hart, R.W., Lu, M.H. & Lyn-Cook, B.D. Effects of caloric restriction in animals on cellular function, oncogene expression, and DNA methylation in vitro. Mutat. Res. 295, 281–289 (1993).
Wolf, N.S., Penn, P.E., Jiang, D., Fei, R.G. Pendergrass, W.R. Caloric restriction: conservation of in vivo cellular replicative capacity accompanies life-span extension in mice. Exp. Cell Res. 217, 317–323 (1995).
Chen, Q., Fischer, A., Reagan, J.D., Yan, L.J. & Ames, B.N. Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc. Natl. Acad. Sci. USA 92, 4337–4341 (1995).
Sundaresan, M., Zu-Xi, Y., Ferrans, V.J., Irani, K. & Finkel, T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270, 296–299 (1995).
Korsmeyer, S.J., Yin, X.M., Oltvai, Z.N., Veis-Novack, D.J. & Linette, G.P. Reactive oxygen species and the regulation of cell death by the Bcl-2 gene family. Biochem. Biophys. Acta 1271, 63–66 (1995).
Farlie, P.G., Dringen, R., Rees, S.M., Kannourakis, G. & .bcl-2 transgene expression can protect neurons against developmental and induced cell death. Proc. Natl. Acad. Sci. USA 92, 4397–4401 (1995).
Czech, C., Masters, C. & Beyreuther, K. Alzheimer's disease and transgenic mice. J. Neural Transm. Suppl. 44, 219–230 (1994).
Hsiao, K.K., Loh, J., Nilsen, S. & Johannsdottir, R. Strain dependence of longevity and behavior in transgenic mice expressing mutant Alzheimer amyloid precursor protein. Soc. Neurosci. 21, 257 (1995).
Games, D. et. al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373, 523–527 (1995).
LaFerla, F.M., Tinkle, B.T., Bieberich, C.J., Haudenschild, C.C. & Jay, G., Alzheimer's A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nature Genet. 9, 21–30 (1995).
Hensley, K. et al. A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc. Nail. Acad. Sci. USA 91, 3270–3274 (1994).
Butterfield, D.A., Hensley, K., Harris, M., Mattson, M. & Carney, J. . β-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer's disease. Biochem. Biophys. Res. Comm. 200, 710–715 (1994).
The SAM Model of Senescence, in Proceedings of the First International Conference on Senescence (ed. Takeda, T.) (Excerpta Medica, Amsterdam, 1994).
Kitado, H., Higuchi, K. & Takeda, T. Molecular genetic characterization of the senescence-accelerated mouse (SAM) strains. J. Gerontol. 49, B247–254 (1994).
Teramoto, S., Fukuchi, Y., Uejima, Y., Ito, H. & Orimo, H. Age-related changes in GSH content of eyes in mice — a comparison of senescence-accelerated mouse (SAM) and C57BL/J mice. Comp. Biochem. Physiol. 102, 693–696 (1992).
Uejima, Y., Fukuchi, Y, Teramoto, S., Tabata, R. & Orimo, H. Age changes in visceral content of glutathione in the senescence accelerated mouse (SAM). Mech. Ageing Dev. 67, 129–139 (1993).
Liu, J. & Mori, A. Age-associated changes in superoxide dismutase activity, thiobarbituric acid reactivity and reduced glutathione level in the brain and liver in senescence accelerated mice (SAM): a comparison with ddY mice. Mech. Ageing Devel. 71, 23–30 (1993).
Teramoto, S., Fukuchi, Y., Uejima, Y., Teramoto, K Orimo, H. Biochemical characteristics of lungs in senescence-accelerated mouse (SAM). Eur. Respir. J. 8, 450–456 (1995).
Martin, G.M. Genetic modulation of the senescent phenotype of Homo sapiens. Exp. Gerontol. 31, 49–59 (1996).
Martin, G.M. Genetic syndromes in man with potential relevance to the pathobiology of aging. Birth Defects. 14, 5–39 (1978).
Martin, G.M. Syndromes of accelerated aging. Natl. Cane. Inst. Monogr. 60, 241–247 (1982).
Rose, M.R. in Evolutionary Biology of Aging. (Oxford University Press, New York, 1991).
Schachter, F. et al. Genetic associations with human longevity at the APOE and ACE loci. Nature Genet. 6, 29–32 (1994).
Strittmatter, W.J. & Roses, A.D. Apolipoprotein E and Alzheimer disease. Proc. Natl. Acad. Sci. USA 92, 4725–4727 (1995).
Oliver, C.N., Ahn, B.W., Moerman, E.J., Goldstein, S. & Stadtman, E.R. Age-related changes in oxidized proteins. J. Biol. Chem. 262, 5488–5491 (1987).
Cristofalo, V.J. & Pignolo, R.J. Cell culture as a model. in Handbook of Physiology, (ed Masoro, E.J.) 53–82 (Oxford University Press, New York, 1995).
Martin, G.M. Clonal attenuation: causes and consequences. J. Gerontol. 48, 6171–172 (1993).
Oshima, J., Campisi, J., Tannock, T.C.A. & Martin, G.M. Regulation of c-fos expression in senescing Werner syndrome fibroblasts differs from that observed in senescing fibroblasts from normal donors. J. Cell. Physio. 162, 277–283 (1995).
Schulz, V.P. et al. Accelerated loss of telomeric repeats may not explain accelerated replicative decline of Werner syndrome cells. Hum. Genet, (in the press).
Fukuchi, K., Martin, G.M. & Monnat, R.J.,Jr., Mutator phenotype of Werner syndrome is characterized by extensive deletions. Proc. Natl. Acad. Sci. USA 86, 5893–5897 (1989).
Yu, C.E. et al. Positional cloning of the Werner's syndrome gene. Science 272, 258–262 (1996).
Carney, J.M. et al. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone. Proc. Natl. Acad. Sci. USA 88, 3633–3636 (1991).
Schapira, A.H. Oxidative stress in Parkinson's disease. Neuropathol. Appl. 21, 3–9 (1995).
Beal, M.F., Aging, energy, and oxidative stress in neurodegenerative diseases. Ann. Neurol. 38, 357–566 (1995).
Benzi, G. & Moretti, A. Are reactive oxygen species involved in Alzheimer's disease?. Neurobiol. Aging. 16, 661–674 (1995).
Sagara, Y., Dargusch, R., Klier, F.G., Schubert, D. & Behl, C. Increased antioxidant enzyme activity in amyloid beta protein-resistant cells. J. Neurosci. 16, 497–505 (1996).
Thomas, T., Thomas, G., McLendon, C, Sutton, T & Mullan, M. β-amyloid-mediated vasoactivity and vascular endothelial damage. Nature 380, 168–171 (1996).
Wallace, D.C., Shoffner, J.M., Trounce, I. & Brown, M.D. Mitochondrial DNA mutations in human degenerative diseases and aging. Biochem. Biophys. Acta. 1271, 141–151 (1995).
Schindler, D. & Hoehn, H. Fanconi anemia mutation causes cellular susceptibility to ambient oxygen. Am. J. Hum. Genet. 43, 429–435 (1988).
Degan, P. et al. In vivo accumulation of 8-hydroxy-2′-deoxyguanosine in DNA correlates with release of reactive oxygen species in Fanconi's anaemia families. Carcinogenesis 16, 735–741 (1995).
Bondy, S.C. & Guo, S.X. Effect of ethanol treatment on indices of cumulative oxidative stress. Euro. J. Pharmacol. 270, 349–55 (1994).
Volm, M., Koomagi, R., Mattern, J. & Stammler, G. Heat shock (hsp70) and resistance proteins in non-small cell lung carcinomas. Cancer Lett. 96, 195–200 (1995).
Carey, J.R., Liedo, P., Orozco, D. Vaupel, J.W. Slowing of mortality rates at older ages in large medfly cohorts. Science 258, 457–461 (1992).
Curtsinger, J.W., Fukui, H.H., Townsend, D.R. & Vaupel, J.W. Demography of genotypes: failure of the limited life-span paradigm in Drosophila melanogaster. Science 268, 461–463 (1992).
Martin, G.M. Genetic and environmental modulations of chromosomal stability: their roles in aging and oncogenesis. Ann. NY Acad. Sci. 621, 401–17 (1991).
Johnson, T.E. & Wood, W.B. Genetic analysis of life-span in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 79, 6603–6607 (1982).
Duhon, S.A., Murakami, S. & Johnson, T.E. Direct isolation of longevity mutants in the nematode, Caenorhabditis elegans. Dev. Genet.(in the press).
Graves, J.L., Luckinbill, L.S. & Nichols, A. Flight duration and wing beat frequency in long- and short-lived Drosophila melanogaster. J. Insect Physiol. 34, 1021–1026 (1988).
Graves, J.L., Toolson, E.C., Jeong, C., Vu, L.N. & Rose, M.R. Desiccation, flight, glycogen and postponed senescence in Drosophila melanogaster. Physiol. Zool. 65, 268–286 (1992).
Ingram, D.K., Weindruch, R., Spangler, E.L., Freeman, J.R. & Walford, R.L. Dietary restriction benefits learning and motor performance of aged mice. J. Gerontol. 42, 78–81 (1987).
Johnson, T.E. Aging can be genetically dissected into component processes using long-lived lines of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 84, 3777–3781 (1987).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Martin, G., Austad, S. & Johnson, T. Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nat Genet 13, 25–34 (1996). https://doi.org/10.1038/ng0596-25
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/ng0596-25
This article is cited by
-
Defining aging
Biology & Philosophy (2020)
-
Larval crowding results in hormesis-like effects on longevity in Drosophila: timing of eclosion as a model
Biogerontology (2019)
-
Polygenic risk score for disability and insights into disability-related molecular mechanisms
GeroScience (2019)