Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The reeler gene encodes a protein with an EGF–like motif expressed by pioneer neurons

Abstract

We have identified a strong candidate cDNA for the mouse reeler gene. This 5 kb transcript encodes a 99.4 kD protein consisting of 881 amino acids and possessing two EGF–like motifs. We assayed two independent mutant alleles — ‘Jackson reeler’, which has a deletion of the entire gene, and ‘Orleans reeler’ which exhibits a 220 bp deletion in the open reading frame, including the second EGF–like motif and resulting in a frame shift. In situ hybridization reveals that the transcript is detected exclusively in the pioneer neurons which guide neuronal cell migration along the radial array. Our findings offer an explanation for how the reeler mutant phenotype causes a disturbance of the complex architecture of the neuronal network.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Falconer, D.S. Two new mutations, trembler and reeler, with neurological actions in the house mouse. J. Genet. 50, 192–201 (1951).

    Article  CAS  Google Scholar 

  2. Pinto-L, M.C., Everard, P. & Caviness, Jr. V.S. Obstructed neuronal migration along radial gltal fibers in the neocortex of the reeler mouse; a Golgi-EM analysis. Dev. Brain Res. 4, 379–393 (1982).

    Article  Google Scholar 

  3. Goffinet, A.M. Events governing organization of postmigratory neurons: studies on brain development in normal and reeler mice. Brain. Res. Rev. 7, 261–296 (1984).

    Article  Google Scholar 

  4. Goffinet, A.M. Cortical architecture development: a comparative study in reptiles. Exp. Brain Res. Ser. 19, 135–144 (1990).

    Google Scholar 

  5. Meyers, W.A. Some observations on reeler, a neuromuscular mutation in mice. Behav. Genet. 1, 225–234 (1970).

    Article  Google Scholar 

  6. Demoncourt, C., Ruelle, D. & Goffinet, A.M. Estimation of genetic distances between “reeler” and nearby loci on mouse chromosome 5. Genomics. 11, 1167–1169 (1991).

    Article  Google Scholar 

  7. Goffinet, A.M. & Demoncourt, C. Localization of the reeler gene relative to flanking loci on mouse chromosome 5. Mamm. Genome. 1, 100–103 (1991).

    Article  CAS  Google Scholar 

  8. Dietrich, W.F. et al. A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nature Genet. 7, 220–225 (1994).

    Article  CAS  Google Scholar 

  9. Beckers, M.C. et al. A high-resolution genetic map of mouse chromosome 5 encompassing the reeler (rl) locus. Genomics. 23, 685–690 (1994).

    Article  CAS  Google Scholar 

  10. Montgomery, J.C., Guarnieri, M.H., Tartaglia, K.E. & Flaherty, L.A. High-resolution genetic map and YAC contig around the mouse neurological locus reeler. Mamm. Genome. 5, 756–761 (1994).

    Article  CAS  Google Scholar 

  11. Hayashizaki, Y. et al. A genetic linkage map of the mouse using Restriction Landmark Genomic Scanning (RLGS). Genetics. 138, 1207–1238 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Okazaki, Y. et al. Direct detection and isolation of RLGS spot DMA marker tightly linked to a specific trait using RLGS spot-bombing method. Proc. natn. Acad. Sci. U.S.A. (in the press).

  13. Miao, G.G. et al. Isolation of an allele of reeler by insertional mutagenesis. Proc. natn. Acad. Sci. U.S.A. 91, 11050–11054 (1994).

    Article  CAS  Google Scholar 

  14. Handford, P.A. et al. The first EGF-like domain from human factor IX contains a high affinity calcium binding site. EMBO J. 9, 475–480 (1990).

    Article  CAS  Google Scholar 

  15. Handford, P.A. et al. Key residues involved in calcium-binding motifs in EGF-like domains. Nature 351, 164–167 (1991).

    Article  CAS  Google Scholar 

  16. Komoriya, A. et al. Biologically active synthetic fragments of epidermal growth factor: Localization of a major receptor-binding region. Proc. natn. Acad. Sci. U.S.A. 81, 1351–1355 (1984).

    Article  CAS  Google Scholar 

  17. Kelley, M.R., Kidd, S., Deutsch, W.A. & Young, M.W. Mutations altering the structure of epidermal growth factor-like coding sequences at the Drosophila notch locus. Cell 51, 539–548 (1987).

    Article  CAS  Google Scholar 

  18. Katariina, K., Karttunen, L., Puhakka, L., Sakai, L. & Peltonen, L. Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome. Nature Genet. 6, 64–69 (1994).

    Article  Google Scholar 

  19. Dietz, H.C. et al. Marfan phenotype variability in a family segregating a missense mutation in epidermal growth factor-like motif of the fibrillin gene. J. clin. Invest. 89, 1674–1680 (1992).

    Article  CAS  Google Scholar 

  20. Dietz, H.C., Saraiva, J.M., Pyeritz, R.E., Cutting, G.R. & Francomano, C.A. Clustering of fibrillin (FBN1) missense mutations in Marfan syndrome patients at cysteine residues in EGF-like domains. Hum. Mut. 1, 366–374 (1992).

    Article  CAS  Google Scholar 

  21. Matus, A. Microtubule associate proteins: their potential role in determining neuronal morphology. A. Rev. Neurosci. 11, 29–44 (1988).

    Article  CAS  Google Scholar 

  22. Steindler, D.A. Trigemino-cerebellar projection in normal and reeler mutant mice. Neuroscience Let. 6, 293–300 (1977).

    Article  CAS  Google Scholar 

  23. Steindler, D.A. & Colwell, S. Reeler mutant mouse: maintenance of appropriate and reciprocal connections in the cerebral cortex and thalamus. Brain Res. 113, 386–393 (1976).

    Article  CAS  Google Scholar 

  24. Terashima, T., Inoue, K., Inoue, Y., Yokoyama, M. & Mikoshiba, K. Observations on the cerebellum of normal-reeler mutant mouse chimera. J. comp. Neurol. 252, 264–278 (1986).

    Article  CAS  Google Scholar 

  25. Yoshiki, A., Nakajima, K., Hiraiwa, N., Mikoshiba, K. & Kusakabe, M. Immunohistological analysis of abnormal cerebellar histogenesis in reeler mutant by aggregation chimeras. Proc. 27th ann. meeting Jap. Soc. Devel. Biol. 169, No.C1015.

  26. Green, E. & Olson, M. Systemic screening of yeast artificial-chromosome libraries by use of polymerase chain reaction. Proc. natn. Acad. Sci. U.S.A. 87, 1213–1217 (1990).

    Article  CAS  Google Scholar 

  27. EMBO practical course: cloning into YAC vector. October 12–19. International Institute of Genetics and Biophysics (1990).

  28. Hirotsune, S. et al. Molecular cloning of polymorphic markers on RLGS gel using the spot target cloning method. Biochem. Biophys. Res. Comm. 194, 1406–1412 (1993).

    Article  CAS  Google Scholar 

  29. Ohsumi, T. et al. A spot cloning method for restriction landmark genomic scanning. Electrophoresis 16, 203–209 (1995).

    Article  CAS  Google Scholar 

  30. Birnboim, H.C. Rapid extraction of high molecular weight RNA from cultured cells and granulocytes for Northern analysis. Nucl. Acids Res. 16, 1487 (1988).

    Article  CAS  Google Scholar 

  31. Hiraiwa, N., Kida, H., Sakakura, T. & Kusakabe, M. Induction of tenascin in cancer cell by interactions with embryonic mesenchyme mediated by a diffusible factor. J. cell Sci. 104, 289–296 (1993).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirotsune, S., Takahara, T., Sasaki, N. et al. The reeler gene encodes a protein with an EGF–like motif expressed by pioneer neurons. Nat Genet 10, 77–83 (1995). https://doi.org/10.1038/ng0595-77

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0595-77

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing