Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comparative sequence analysis of the human and pufferfish Huntington's disease genes

Abstract

The Huntington's disease (HD) gene encodes a novel protein with as yet no known function. In order to identify the functionally important domains of this protein, we have cloned and sequenced the homologue of the HD gene in the pufferfish, Fugu rubripes. The Fugu HD gene spans only 23 kb of genomic DMA, compared to the 170 kb human gene, and yet all 67 exons are conserved. The first coding exon, the site of the disease–causing triplet repeat, is highly conserved. However, the glutamine repeat in Fugu consists of just four residues. We also show that gene order may be conserved over longer stretches of the two genomes. Our work describes a detailed example of sequence comparison between human and Fugu and illustrates the power of the pufferfish genome as a model system in the analysis of human genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Martin, J.B. & Gusella, J.F. Huntington's disease: pathogenesis and management. New Engl. J. Med. 315, 1267–1276 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. The Hontington's Disease Collabrative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntingtons disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  3. La Spada, A.R., Wilson, E.M., Luhbahn, D.B., Harding, A.E. & Fischbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Kremer, E.J. et al. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 252, 1711–1714 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Verkerk, A.J.M.H. et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Brook, J.D. et al. Molecular-basis of Myotonic-Dystrophy — expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a Protein Kinase family member. Cell 68, 799–808 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Caskey, C.T., Pizzuti, A., Fu, Y.H., Fenwick, R.G. & Nelson, D.L. Triplet repeat mutations in human disease. Science 256, 784–789 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Fu, Y.H. et al. An unstable triplet repeat in a gene related to Myotonic muscular-dystrophy. Science 255, 1256–1258 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Koide, R. et al. Unstable expansion of GAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nature Genet. 6, 9–13 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Orr, H.T. et al. Expansion of an unstable trinucleotide GAG repeat in spinocerebellar ataxia type 1. Nature Genet. 4, 221–226 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Mahadevan, M. et al. Myotonic dystrophy mutation — an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Burke, J.R. et al. The Haw River-syndrome—dentatorubropallidoluysian atrophy (DRPLA) in an African-American family. Nature Genet. 7, 521–524 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Kawaguchi, Y. et al. GAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature Genet. 8, 221–228 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Ambrose, C.M. et al. Structure and expression of the Huntingtons disease gene—evidence against simple inactivation due to an expanded GAG repeat. Somat. Cell molec. Genet. 20, 27–38 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Barnes, G.T. et al. Mouse Huntingtons disease gene homolog (Hdh). Somat. Cell molec. Genet. 20, 87–97 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Lin, B.Y. et al. Sequence of the murine Huntington disease gene — evidence for conservation, and polymorphism in a triplet (CCG) repeat alternate splicing. Hum. molec. Genet. 3, 85–92 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Brenner, S. et al. Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature 366, 265–268 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Baxendale, S. et al. A cosmid contig and high resolution restriction map of the 2 megabase region containing the Huntingtons disease gene. Nature Genet. 4, 181 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Nizetic, D. et al. Construction, arraying, and high-density screening of large insert libraries of human chromosomes X and 21: their potential use as reference libraries. Proc. natl. Acad. Sci. U.S.A. 88, 3233–3237 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sharp, P.A. Speculations on RNA splicing. Cell 23, 643–646 (1981).

    Article  CAS  PubMed  Google Scholar 

  21. Radley, E., Alderton, R.P., Kelly, A., Trowsdale, J. & Beck, S. Genomic organization of HLA-dma and HLA-dmb — comparison of the gene organization of all 6 class II families in the human major histocompatibility complex. J. biol. Chem. 269, 18834–18838 (1994).

    CAS  PubMed  Google Scholar 

  22. Brown, N.P., Whittaker, A.J., Newell, W.R., Rawlings, C.J. & Beck, S. A novel technique for the identification and analysis of multigene families by comparing intron/exon boundaries. J. molec. Biol. (in the press).

  23. Stine, O.C. et al. Correlation between the onset age of Huntington's disease and length of the trinucleotide repeat in IT-15. Hum. molec. Genet. 2, 1547–1549 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Barron, L.H. et al. A study of the Huntingtons disease associated trinucleotide repeat in the Scottish population. J. med. Genet. 30, 1003–1007 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Andrew, S.E. et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntingtons disease. Nature Genet. 4, 398–403 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Rubinsztein, D.C. et al. Mutational bias provides a model for the evolution of Huntingtons disease and predicts a general increase in disease prevalence. Nature Genet. 7, 525–530 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Perutz, M.F., Johnson, T., Suzuki, M. & Finch, J.T. Glutamine repeats as polar zippers — their possible role in inherited neurodegenerative diseases. Proc. natn. Acad. Sci. U.S.A. 91, 5355–5358 (1994).

    Article  CAS  Google Scholar 

  28. Lin, B.Y. et al. Differential 3′ polyadenylation of the Huntington disease gene results in 2 messenger RNA species with variable tissue expression. Hum. molec. Genet. 2, 1541–1545 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Lin, B. et al. Structural analysis of the 5′ region of mouse and human Huntington Disease genes reveals conservation of putative promoter region and di- and trinucleotide polymorphisms. Genomics 25, 707–715 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Jurka, J. & Smith, T. A fundamental division in the Alu family of repeated sequences. Proc. natn. Acad. Sci. U.S.A. 85, 4775–4778 (1988).

    Article  CAS  Google Scholar 

  31. Beck, S. et al. DNA sequence analysis of 66 kb of the human MHC class II region encoding a cluster of genes for antigen processing. J. molec. Biol. 228, 433–441 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. molec. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Snell, R.G. et al. The isolation of cDNAs within the Huntington disease region by hybridization of yeast artificial chromosomes to a cDNA library. Hum. molec. Genet. 2, 305–309 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Taylor, S.A.M. et al. Cloning of the alpha-adducin gene from the Huntingtons-disease candidate region of chromosome 4 by exon amplification. Nature Genet. 2, 223–227 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Grosson, C.L.S. et al. Synteny conservation of the Huntingtons disease gene and surrounding loci on mouse chromosome 5. Mamm. Genome 5, 424–428 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Nasir, J. et al. The murine homologs of the Huntington disease gene (Hdh) and the alpha-adducin gene (ADD1) map to mouse chromosome 5 within a region of conserved synteny with human chromosome 4p16.3. Genomics 22, 198–201 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Ambrose, C. et al. A novel G protein-coupled receptor kinase cloned from 4p16.3. Hum. molec. Genet. 1, 697–703 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Koop, B.F. & Hood, L. Striking sequence similarity over almost 100 kilobases of human and mouse T-cell receptor DNA. Nature Genet. 7, 48–53 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Shehee, W.R. et al. Nucleotide sequence of the BALB/c mouse β-globin complex. J. molec. Biol. 205, 41–62 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Lindsay, S. & Bird, A.P. Use of restriction enzymes to detect potential gene sequences in mammalian DNA. Nature 327, 336–338 (1987).

    Article  CAS  PubMed  Google Scholar 

  41. Cross, S., Kovarik, P., Schmidtke, J. & Bird, A. Non-methylated islands in fish genomes are GC poor. Nucl. Acids Res. 19, 1469–1474 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Marshall, H. et al. A conserved retinoic acid response element required for early expression of the homeobox gene hoxb-1. Nature 370, 567–571 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Speek, M., Raff, J.W., Harrison-Lavoie, K., Little, P.F. & Glover, D.M., Smart2, a cosmid vector with a phage lambda origin for both systematic chromosome walking and P-element-mediated gene transfer in. Drosophila. Gene 64, 173–177 (1988).

    CAS  PubMed  Google Scholar 

  44. Weis, J.H., Tan, S.S., Martin, B.K. & Wittwer, C.T. Detection of rare mRNAs via quantitative RT-PCR. Trends Genet. 8, 263–264 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Gaudette, M.F. & Crain, W.R. A simple method for quantifying specific mRNAs in small numbers of early mouse embryos. Nucl. Acids Res. 19, 1879–1884 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bates, G.P. et al. Defined physical limits of the Huntington disease gene candidate region. Am. J. hum. Genet. 49, 7–16 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bankier, A.T., Weston, K.M. & Barrel, B.G. Random cloning and sequencing by the M13/dideoxynucleotide chain termination method. Meth. Enzym. 155, 51–93 (1987).

    Article  CAS  PubMed  Google Scholar 

  48. Beck, S. & Alderton, R.P. A strategy for the amplification, purification, and selection of M13 templates for large-scale DNA-sequencing. Anal. Biochem. 212, 498–505 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Sanger, F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  CAS  Google Scholar 

  50. Alderton, R.P. & Beck, S. Automated DNA hybridisation. Anal. Biochem. 218, 98–102 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Dear, S. & Staden, R. A sequence assembly and editing program for efficient management of large projects. Nucl. Acids Res. 19, 3907–3911 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Staden, R. in Nucleic Acids and Sequence Analysis: a practical approach. (eds Bishop, M.J. & Rawlings, C.J.). 173–217 (IRL Press Oxford, 1987).

    Google Scholar 

  53. Wilson, R. et al. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature 368, 32–38 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Pearson, W.L. & Lipman, D.J. Improved tools for biological sequence analysis. Proc. natl. Acad. Sci. U.S.A. 85, 2444–2448 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sternberg, M.J.E. PROMOT: a FORTRAN program to scan protein sequences against a library of known motifs. Comp. Applic. Biosci. 7, 257–260 (1991).

    CAS  Google Scholar 

  56. Fuchs, R. MacPattern — Protein pattern searching on the apple Macintosh Comp. Applic. Biosci. 7, 105–106 (1991).

    CAS  Google Scholar 

  57. Jurka, J., Walichiewicz, J. & Milosavljevic, A. Prototypic sequences for human repetitive DNA. J. molec. Evol. 35, 286–291 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baxendale, S., Abdulla, S., Elgar, G. et al. Comparative sequence analysis of the human and pufferfish Huntington's disease genes. Nat Genet 10, 67–76 (1995). https://doi.org/10.1038/ng0595-67

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0595-67

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing