Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IGF2 is parentally imprinted during human embryogenesis and in the Beckwith–Wiedemann syndrome

Abstract

The phenomenon of parental imprinting involves the preferential expression of one parental allele of a subset of chromosomal genes and has so far only been documented in the mouse. We show here, by exploiting sequence polymorphisms in exon nine of the human insulin–like growth factor 2 (IGF2) gene, that only the paternally–inherited allele is active in embryonic and extra–embryonic cells from first trimester pregnancies. In addition, only the paternal allele is expressed in tissues from a patient who suffered from Beckwith–Wiedemann syndrome. Thus the parental imprinting of IGF2 appears to be evolutionarily conserved from mouse to man and has implications for the generation of the Beckwith–Wiedemann syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Surani, M.A.H. Genomic imprinting: Developmental significance and molecular mechanisms. Curr. Op. genet. Develop. 1, 241–246 (1991).

    Article  CAS  Google Scholar 

  2. Solter, D. Differential imprinting and expression of maternal and paternal genomes. Annu. rev. Genet. 22, 127–146 (1988).

    Article  CAS  Google Scholar 

  3. Barlow, D., Stöger, R., Herrmann, B., Saito, K. & Schweifer, N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349, 84–87 (1991).

    Article  CAS  Google Scholar 

  4. Bartolomei, M., Zemel, S. & Tilghman, S. Parental imprinting of the mouse H19 gene. Nature 351, 153–155 (1991).

    Article  CAS  Google Scholar 

  5. DeChiara, T., Robertson, E. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor 2 gene. Cell 64, 849–859 (1991).

    Article  CAS  Google Scholar 

  6. Leff, S.E. et al. Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader-Villi syndrome region. Nature Genet. 2, 265–269 (1992).

    Article  Google Scholar 

  7. Zhang, Y. & Tycko, B. Monoallelic expression of the human H19 gene. Nature Genet. 1, 40–44 (1992).

    Article  CAS  Google Scholar 

  8. Rachmilewitz, J. et al. Parental imprinting of the human H19 gene. FEBS Lett. 309, 25–28 (1992).

    Article  CAS  Google Scholar 

  9. Reik, W. Genomic imprinting and genetic disorders in man. Trends Genet. 5, 331–336 (1989).

    Article  CAS  Google Scholar 

  10. Hall, J.G. Genomic imprinting: review and relevance to human diseases. Am. J. hum. Genet. 46, 103–123 (1990).

    Google Scholar 

  11. Junien, C. Beckwith-Wiedemann syndrome, tumorigenesis and imprinting. Curr. Op. Genet. Develop. 2, 431–438 (1992).

    Article  CAS  Google Scholar 

  12. Özcelik, T. et al. Small ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader-Villi syndrome critical region. Nature Genet. 2, 265–269 (1992).

    Article  Google Scholar 

  13. Little, M., van Heyningen, V. & Hastie, N. Dads and disomy and disease. Nature 351, 609–610 (1991).

    Article  CAS  Google Scholar 

  14. Lawler, S.D. & Fisher, R. The contribution of the paternal genome: hydatidiform mole and choriocarcinoma in The Placenta (eds Redman, C.W.G., Sargent, I.L & Starkey, P.) 82–112 (Blackwell Scientific Publications, Oxford, 1993).

    Google Scholar 

  15. Ohlsson, R., Holmgren, L., Glaser, A., Szpecht, A. & Pfeifer-Ohlsson, S. (1989). Insulin-like growth factor 2 and short-range stimulatory loops in control of human placental growth. EMBO J. 8, 1993–1999.

    Article  CAS  Google Scholar 

  16. Ohlsson, R., Larsson, E., Nilsson, O., Wahlström, T. & Sundström, P. Blastocyst implantation precedes induction of insulin-like growth factor II gene expression in human trophoblasts. Development 106, 555–559 (1989).

    CAS  PubMed  Google Scholar 

  17. Brice, A.L., Cheetham, J.E., Bolton, V.N., Hill, N.C.W. & Schofield, P.N. Temporal changes in the expression of the insulin-like growth factor II gene associated with tissue maturation in the human fetus. Development 106, 543–554 (1989).

    CAS  PubMed  Google Scholar 

  18. Jansen, M. et al. in Growth Factors: From Genes to Clinical Application (eds Sara, V. et al.) 25–40 (Raven Press, New York 1990).

    Google Scholar 

  19. Julier, C. et al. Insulin-IGF2 region on chromosome 11p encodes a gene implicated in HLA-DR4-dependent diabetes suceptibility. Nature 354, 155–159 (1991).

    Article  CAS  Google Scholar 

  20. Haig, D. & Graham, C. Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell 64, 1045–1046 (1991).

    Article  CAS  Google Scholar 

  21. Chomcynski, P. & Sacchi, N. A single-step method for isolation of RNA. Analyt. Biochem. 162, 156–159 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohlsson, R., Nyström, A., Pfeifer-Ohlsson, S. et al. IGF2 is parentally imprinted during human embryogenesis and in the Beckwith–Wiedemann syndrome. Nat Genet 4, 94–97 (1993). https://doi.org/10.1038/ng0593-94

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0593-94

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing