Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity

Abstract

Hepatocellular carcinoma (HCC) is a major cause of cancer death, but the molecular mechanism for its development beyond its initiation has not been well characterized. Suppressor of cytokine signaling (SOCS-1; also known as JAB and SSI-1) switches cytokine signaling 'off' by means of its direct interaction with Janus kinase (JAK). We identified aberrant methylation in the CpG island of SOCS-1 that correlated with its transcription silencing in HCC cell lines. The incidence of aberrant methylation was 65% in the 26 human primary HCC tumor samples analyzed. Moreover, the restoration of SOCS-1 suppressed both growth rate and anchorage-independent growth of cells in which SOCS-1 was methylation-silenced and JAK2 was constitutively activated. This growth suppression was caused by apoptosis and was reproduced by AG490, a specific, chemical JAK2 inhibitor that reversed constitutive phosphorylation of STAT3 in SOCS-1 inactivated cells. The high prevalence of the aberrant SOCS-1 methylation and its growth suppression activity demonstrated the importance of the constitutive activation of the JAK/STAT pathway in the development of HCC. Our results also indicate therapeutic strategies for the treatment of HCC including use of SOCS-1 in gene therapy and inhibition of JAK2 by small molecules, such as AG490.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlation of DNA methylation and loss of expression of SOCS-1 in HCC cell lines.
Figure 2: Alteration of the matrix association at the SOCS-1 locus.
Figure 3: MSP analysis of 26 primary HCC samples in the SOCS-1 CpG island.
Figure 4: Constitutive activation of the JAK/STAT pathway in SOCS-1 methylation-silenced HCC cell lines.
Figure 5: Effects of JAK2 inhibition by restoration of SOCS-1 or AG490.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Masuhara, M. et al. Cloning and characterization of novel CIS family genes. Biochem. Biophys. Res. Commun. 239, 439–446 (1997).

    Article  CAS  Google Scholar 

  2. Hilton, D.J. et al. Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc. Natl. Acad. Sci. USA 95, 114–119 (1998).

    Article  CAS  Google Scholar 

  3. Starr, R. et al. A family of cytokine-inducible inhibitors of signalling. Nature 387, 917–921 (1997).

    Article  CAS  Google Scholar 

  4. Endo, T.A. et al. A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387, 921–924 (1997).

    Article  CAS  Google Scholar 

  5. Naka, T. et al. Structure and function of a new STAT-induced STAT inhibitor. Nature 387, 924–929 (1997).

    Article  CAS  Google Scholar 

  6. Kramer, J.A., Adams, M.D., Singh, G.B., Doggett, N.A. & Krawetz, S.A. Extended analysis of the region encompassing the PRM1→PRM2→TNP2 domain: genomic organization, evolution and gene identification. J. Exp. Zool. 282, 245–253 (1998).

    Article  CAS  Google Scholar 

  7. Losman, J.A., Chen, X.P., Hilton, D. & Rothman, P. Cutting edge: SOCS-1 is a potent inhibitor of IL-4 signal transduction. J. Immunol. 162, 3770–3774 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ihle, J.N. Cytokine receptor signalling. Nature 377, 591–594 (1995).

    Article  CAS  Google Scholar 

  9. Ramponi, G. et al. Overexpression of a synthetic phosphotyrosine protein phosphatase gene inhibits normal and transformed cell growth. Int. J. Cancer 51, 652–656 (1992).

    Article  CAS  Google Scholar 

  10. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

    Article  CAS  Google Scholar 

  11. Furnari, F.B., Lin, H., Huang, H.S. & Cavenee, W.K. Growth suppression of glioma cells by PTEN requires a functional phosphatase catalytic domain. Proc. Natl. Acad. Sci. USA 94, 12479–12484 (1997).

    Article  CAS  Google Scholar 

  12. Shultz, L.D. et al. Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell 73, 1445–1454 (1993).

    Article  CAS  Google Scholar 

  13. Klingmuller, U., Lorenz, U., Cantley, L.C., Neel, B.G. & Lodish, H.F. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80, 729–738 (1995).

    Article  CAS  Google Scholar 

  14. Garcia, R. et al. Constitutive activation of Stat3 in fibroblasts transformed by diverse oncoproteins and in breast carcinoma cells. Cell Growth Differ. 8, 1267–1276 (1997).

    CAS  PubMed  Google Scholar 

  15. Luo, H., Hanratty, W.P. & Dearolf, C.R. An amino acid substitution in the Drosophila hopTum-l Jak kinase causes leukemia-like hematopoietic defects. EMBO J. 14, 1412–1420 (1995).

    Article  CAS  Google Scholar 

  16. Harrison, D.A., Binari, R., Nahreini, T.S., Gilman, M. & Perrimon, N. Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J. 14, 2857–2865 (1995).

    Article  CAS  Google Scholar 

  17. Lacronique, V. et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278, 1309–1312 (1997).

    Article  CAS  Google Scholar 

  18. Bromberg, J.F. et al. Stat3 as an oncogene. Cell 98, 295–303 (1999).

    Article  CAS  Google Scholar 

  19. Catlett-Falcone, R. et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10, 105–115 (1999).

    Article  CAS  Google Scholar 

  20. Herman, J.G. et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl. Acad. Sci. USA 91, 9700–9704 (1994).

    Article  CAS  Google Scholar 

  21. Herman, J.G. et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 55, 4525–4530 (1995).

    CAS  Google Scholar 

  22. Esteller, M., Hamilton, S.R., Burger, P.C., Baylin, S.B. & Herman, J.G. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 59, 793–797 (1999).

    CAS  PubMed  Google Scholar 

  23. Graff, J.R. et al. E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res. 55, 5195–5199 (1995).

    CAS  PubMed  Google Scholar 

  24. Katzenellenbogen, R.A., Baylin, S.B. & Herman, J.G. Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood 93, 4347–4353 (1999).

    CAS  Google Scholar 

  25. Herman, J.G. et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl. Acad. Sci. USA 95, 6870–6875 (1998).

    Article  CAS  Google Scholar 

  26. Nagai, H. et al. Aberration of genomic DNA in association with human hepatocellular carcinomas detected by 2-dimensional gel analysis. Cancer Res. 54, 1545–1550 (1994).

    CAS  PubMed  Google Scholar 

  27. Yoshikawa, H. et al. Chromosome assignment of aberrant NotI restriction DNA fragments in primary hepatocellular carcinoma. Gene 197, 129–135 (1997).

    Article  CAS  Google Scholar 

  28. Paulson, J.R. & Laemmli, U.K. The structure of histone-depleted metaphase chromosomes. Cell 12, 817–828 (1977).

    Article  CAS  Google Scholar 

  29. Vogelstein, B., Pardoll, D.M. & Coffey, D.S. Supercoiled loops and eucaryotic DNA replication. Cell 22, 79–85 (1980).

    Article  CAS  Google Scholar 

  30. Zlatanova, J.S. & van Holde, K.E. Chromatin loops and transcriptional regulation. Crit. Rev. Euk. Gene Exp. 2, 211–224 (1992).

    CAS  Google Scholar 

  31. Meydan, N. et al. Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 379, 645–648 (1996).

    Article  CAS  Google Scholar 

  32. Migone, T.S. et al. Constitutively activated Jak–STAT pathway in T cells transformed with HTLV-I. Science 269, 79–81 (1995).

    Article  CAS  Google Scholar 

  33. Danial, N.N., Pernis, A. & Rothman, P.B. Jak–STAT signaling induced by the v-abl oncogene. Science 269, 1875–1877 (1995).

    Article  CAS  Google Scholar 

  34. Weber-Nordt, R.M. et al. Constitutive activation of STAT proteins in primary lymphoid and myeloid leukemia cells and in Epstein-Barr virus (EBV)-related lymphoma cell lines. Blood 88, 809–816 (1996).

    CAS  PubMed  Google Scholar 

  35. Cressman, D.E., Diamond, R.H. & Taub, R. Rapid activation of the Stat3 transcription complex in liver regeneration. Hepatology 21, 1443–1449 (1995).

    Article  CAS  Google Scholar 

  36. Trautwein, C., Rakemann, T., Niehof, M., Rose-John, S. & Manns, M.P. Acute-phase response factor, increased binding, and target gene transcription during liver regeneration. Gastroenterology 110, 1854–1862 (1996).

    Article  CAS  Google Scholar 

  37. Kishimoto, T., Taga, T. & Akira, S. Cytokine signal transduction. Cell 76, 253–262 (1994).

    Article  CAS  Google Scholar 

  38. Darnell, J.E., Jr., Kerr, I.M. & Stark, G.R. Jak–STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421 (1994).

    Article  CAS  Google Scholar 

  39. Starr, R. et al. Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling-1. Proc. Natl. Acad. Sci. USA 95, 14395–14399 (1998).

    Article  CAS  Google Scholar 

  40. Naka, T. et al. Accelerated apoptosis of lymphocytes by augmented induction of Bax in SSI-1 (STAT-induced STAT inhibitor-1) deficient mice. Proc. Natl. Acad. Sci. USA 95, 15577–15582 (1998).

    Article  CAS  Google Scholar 

  41. Rashid, A. et al. Genetic alterations in hepatocellular carcinomas from the People's Republic of China: association between loss of heterozygosity on chromosome 4q and abnormalities of p53 tumor suppressor gene. Br. J. Cancer 80, 59–66 (1999).

    Article  CAS  Google Scholar 

  42. Yoshikawa, H., Fujiyama, A., Nakai, K., Inazawa, J. & Matsubara, K. Detection and isolation of a novel human gene located on Xp11.2–p11.4 that escapes X-inactivation using a two-dimensional DNA mapping method. Genomics 49, 237–246 (1998).

    Article  CAS  Google Scholar 

  43. Herman, J.G., Graff, J.R., Myohanen, S., Nelkin, B.D. & Baylin, S.B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA 93, 9821–9826 (1996).

    Article  CAS  Google Scholar 

  44. Kramer, J.A. & Krawetz, S.A. PCR-based assay to determine nuclear matrix association. Biotechniques 22, 826–828 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Hancock and E. Spillare for technical assistance; M. Rountree for technical advice; S. Baylin for critical comments on the manuscript; and S. Tamai for providing liver samples. H. Yoshikawa was supported in part by the NCI-JFCR scientist exchange program. Supported in part by P50 CA58184.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James G. Herman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshikawa, H., Matsubara, K., Qian, GS. et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet 28, 29–35 (2001). https://doi.org/10.1038/ng0501-29

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0501-29

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing