Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis

Abstract

The homologous membrane proteins Rom-1 and peripherin-2 are localized to the disk rims of photoreceptor outer segments (OSs), where they associate as tetramers and larger oligomers1,2,3. Disk rims are thought to be critical for disk morphogenesis, OS renewal4 and the maintenance of OS structure5, but the molecules which regulate these processes are unknown. Although peripherin-2 is known to be required for OS formation (because Prph2−/− mice do not form OSs; ref. 6), and mutations in RDS (the human homologue of Prph2) cause retinal degeneration7, the relationship of Rom-1 to these processes is uncertain. Here we show that Rom1−/− mice form OSs in which peripherin-2 homotetramers are localized to the disk rims, indicating that peripherin-2 alone is sufficient for both disk and OS morphogenesis. The disks produced in Rom1−/− mice were large, rod OSs were highly disorganized (a phenotype which largely normalized with age) and rod photoreceptors died slowly by apoptosis. Furthermore, the maximal photoresponse of Rom1−/− rod photoreceptors was lower than that of controls. We conclude that Rom-1 is required for the regulation of disk morphogenesis and the viability of mammalian rod photoreceptors, and that mutations in human ROM1 may cause recessive photoreceptor degeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of Rom1-mutant mice.
Figure 2: Complete loss of Rom-1 results in apoptotic rod photoreceptor death.
Figure 3: The loss of Rom-1 leads to the development of short ROSs, which exhibit a biphasic pattern of disorganization.
Figure 4: ROS ultrastructure is abnormal in Rom1−/− mice, whereas cone OSs appear structurally normal.
Figure 5: Electroretinographic responses are abnormal in Rom1−/− mice.
Figure 6: Homotetramers of peripherin-2 are localized at the rims of ROS in Rom1-mutant mice.

Similar content being viewed by others

References

  1. Bascom, R.A. et al. Cloning of the cDNA for a novel photoreceptor membrane protein (rom-1) identifies a disk rim protein family implicated in human retinopathies . Neuron 8, 1171–1184 (1992).

    Article  CAS  Google Scholar 

  2. Kedzierski, W., Weng, J. & Travis, G.H. Analysis of the rds/peripherin:rom1 complex in transgenic photoreceptors that express a chimeric protein. J. Biol. Chem. 274, 29181–29187 (1999).

    Article  CAS  Google Scholar 

  3. Loewen, C.J.R. & Molday, R.S. Disulfide-mediated oligomerization of peripherin/rds and rom-1 from photoreceptor disk membranes. Implications for photoreceptor outer segment morphogenesis and degeneration. J. Biol. Chem. 275, 5370–5378 (2000).

    Article  CAS  Google Scholar 

  4. Young, R.W. Visual cells and the concept of renewal. Invest. Ophthalmol. Vis. Sci. 15, 700–725 ( 1976).

    CAS  PubMed  Google Scholar 

  5. Steinberg, R.H., Fisher, S.K. & Anderson, D.H. Disc morphogenesis in vertebrate photoreceptors. J. Comp. Neurol. 190, 501–519 (1980).

    Article  CAS  Google Scholar 

  6. Sanyal, S., De Ruiter, A. & Hawkins, R.K. Development and degeneration of retina in rds mutant mice: light microscopy. J. Comp. Neurol. 194, 193–207 (1980).

    Article  CAS  Google Scholar 

  7. Kohl, S. et al. The role of the peripherin/RDS gene in retinal dystrophies . Acta Anat. 162, 75–84 (1998).

    Article  CAS  Google Scholar 

  8. Travis, G.H. Mechanisms of cell death in the inherited retinal degenerations. Am. J. Hum. Genet. 62, 503–508 (1998).

    Article  CAS  Google Scholar 

  9. Hawkins, R.K., Jansen, H.G. & Sanyal, S. Development and degeneration of retina in rds mutant mice: photoreceptor abnormalities in the heterozygotes. Exp. Eye Res. 41, 701–720 (1985).

    Article  CAS  Google Scholar 

  10. Carter-Dawson, L.D. & LaVail, M.M. Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy . J. Comp. Neurol. 188, 245– 262 (1979).

    Article  CAS  Google Scholar 

  11. Williams, D.S. Actin filaments and photoreceptor membrane turnover. Bioessays 13, 171–178 ( 1991).

    Article  Google Scholar 

  12. Arikawa, K., Molday, L.L., Molday, R.S. & Williams, D.S. Localization of peripherin/rds in disk membranes of cone and rod photoreceptors: relationship to disk membrane morphogenesis and retinal degeneration. J. Cell Biol. 116, 659–667 (1992).

    Article  CAS  Google Scholar 

  13. Williams, D.S., Linberg, K.A., Vaughan, D.K., Fariss, R.N. & Fisher, S.K. Disruption of microfilament organization and deregulation of disk membrane morphogenesis by cytochalasin D in rod and cone photoreceptors. J. Comp. Neurol. 272, 161–176 (1988).

    Article  CAS  Google Scholar 

  14. Boesze-Battaglia, K., Lamba, O.P., Napoli, A.A. Jr, Sinha, S. & Guo, Y. Fusion between retinal rod outer segment membranes and model membranes: a role for photoreceptor peripherin/rds. Biochemistry 37, 9477– 9487 (1998).

    Article  CAS  Google Scholar 

  15. Goldberg, A.F.X., Moritz, O.L. & Molday, R.S. Heterologous expression of photoreceptor peripherin/rds and rom-1 in COS-1 cells: assembly, interactions, and localization of multisubunit complexes. Biochemistry 34, 14213– 14219 (1995).

    Article  CAS  Google Scholar 

  16. Illing, M., Molday, L.L. & Molday, R.S. The 220-kDa rim protein of retinal rod outer segments is a member of the ABC transporter superfamily. J. Biol. Chem. 272, 10303–10310 (1997).

    Article  CAS  Google Scholar 

  17. Moritz, O.L. & Molday, R.S. Molecular cloning, membrane topology, and localization of bovine rom-1 in rod and cone photoreceptor cells. Invest. Ophthalmol. Vis. Sci. 37, 352– 362 (1996).

    CAS  PubMed  Google Scholar 

  18. Bascom, R.A., Schappert, K. & McInnes, R.R. Cloning of the human and murine ROM1 genes: genomic orgnization and sequence conservation. Hum. Mol. Genet . 2, 385–391 ( 1993).

    Article  CAS  Google Scholar 

  19. Dryja, T.P., Hahn, L.B., Kajiwara, K. & Berson, E.L. Dominant and digenic mutations in the Peripherin/RDS and ROM1 genes in retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 38, 1972–1982 (1997).

    CAS  PubMed  Google Scholar 

  20. Tybulewicz, V.L.J., Crawford, C.E., Jackson, P.K., Bronson, R.T. & Mulligan, R.C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163 ( 1991).

    Article  CAS  Google Scholar 

  21. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J.C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl Acad. Sci. USA 90, 8424–8428 ( 1993).

    Article  CAS  Google Scholar 

  22. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  23. Nagy, A. & Rossant, J. in Gene Targeting: A Practical Approach (ed. Joyner, A.L.) 147–179 (Oxford University Press, Oxford, 1993).

    Google Scholar 

  24. Connell, G. et al. Photoreceptor peripherin is the normal product of the gene responsible for retinal degeneration slow in the rds mouse. Proc. Natl Acad. Sci. USA 88, 723– 726 (1991).

    Article  CAS  Google Scholar 

  25. Molday, R.S. & MacKenzie, D. Monoclonal antibodies to rhodopsin: characterization, cross-reactivity, and application as structural probes. Biochemistry 22, 653–660 (1983).

    Article  CAS  Google Scholar 

  26. Röhlich, P. & Szél, Á. Binding sites of photoreceptor-specific antibodies COS-1, OS-2 and AO. Exp. Eye Res. 12, 935–944 (1993).

    Article  Google Scholar 

  27. Michon, J.J., Li, Z.-L., Shioura, N., Anderson, R.J. & Tso, M.O.M. A comparative study of methods of photoreceptor morphometry. Invest. Ophthalmol. Vis. Sci. 32, 280–284 (1991).

    CAS  PubMed  Google Scholar 

  28. Kedzierski, W., Lloyd, M., Birch, D.G., Bok, D. & Travis, G.H. Generation and analysis of transgenic mice expressing P216L-substituted rds/peripherin in rod photoreceptors. Invest. Ophthalmol. Vis. Sci. 38, 498–509 (1997).

    CAS  PubMed  Google Scholar 

  29. Goldberg, A.F.X. & Molday, R.S. Subunit composition of the peripher/rds-rom-1 disk rim complex from rod photoreceptors: hydrodynamic evidence for a tetrameric quarternary structure. Biochemistry 35, 6144–6149 (1996).

    Article  CAS  Google Scholar 

  30. Goldberg, A.F.X., Loewen, C.J.R. & Molday, R.S. Cysteine residues of photoreceptor peripherin/rds: role in subunit assembly and autosomal dominant retinitis pigmentosa. Biochemistry 37, 680–685 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.G. Hollyfield, D. Bok, A. Aguirre and S. Fisher for helpful comments; J. Saari for the RDH-E6 anti-peripherin-2 antibody; G.H. Travis for the anti-peripherin-2 antibody D2P4; J. Nathans for the 2379 antibody to the Abcr protein; and B. Calvieri, D. Gross and I. Diplock for technical assistance. This work was supported by the Foundation Fighting Blindness (R.R.M.), the RP Eye Research Foundation of Canada (R.R.M. and R.S.M.), the NEI (EY02422) (R.S.M.), the Medical Research Council (Canada) (R.S.M. and J.R.) and the Canadian Genetic Disease Network (R.R.M.). G.C. was a recipient of a RP Eye Research Foundation of Canada Studentship. R.R.M. and J.R. are International Research Scholars of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderick R. McInnes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, G., Goldberg, A., Vidgen, D. et al. Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis. Nat Genet 25, 67–73 (2000). https://doi.org/10.1038/75621

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75621

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing