Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus

Abstract

Char syndrome is an autosomal dominant trait characterized by patent ductus arteriosus, facial dysmorphism and hand anomalies. Using a positional candidacy strategy, we mapped TFAP2B, encoding a transcription factor expressed in neural crest cells, to the Char syndrome critical region and identified missense mutations altering conserved residues in two affected families. Mutant TFAP2B proteins dimerized properly in vitro, but showed abnormal binding to TFAP2 target sequence. Dimerization of both mutants with normal TFAP2B adversely affected transactivation, demonstrating a dominant-negative mechanism. Our work shows that TFAP2B has a role in ductal, facial and limb development and suggests that Char syndrome results from derangement of neural-crest-cell derivatives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TFAP2B mutations in Char syndrome.
Figure 2: Clustal W alignment of human TFAP2 protein sequences for the region of the A264D (ARK) and R289C (SCOT) mutations.
Figure 3: Expression and function of recombinant TFAP2 proteins.
Figure 4: Chemical crosslinking of recombinant TFAP2 proteins.
Figure 5: Electromobility shift assay (EMSA) with co-translated TFAP2 proteins.
Figure 6: Transient expression of wild-type and mutant TFAP2B in NIH3T3 cells.

Similar content being viewed by others

References

  1. Mullins, C.E. & Pagotto, L. Patent ductus arteriosus. in The Science and Practice of Pediatric Cardiology (eds Garson, A.J., Bricker, J.T., Fisher, D.J. & Neish, S.R.) 1181– 1197 (Williams and Wilkins, Baltimore, 1998).

  2. Nora, J.J. & Nora, A.H. Update on counseling the family with a first degree relative with a congenital heart defects. Am. J. Med. Genet. 29, 137–142 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Zetterqvist, P.A. Clinical and Genetic Study of Congenital Heart Defects. Thesis, Univ. Uppsala (1972).

  4. Char, F. Peculiar facies with short philtrum, duck-bill lips, ptosis, and low-set ears—a new syndrome? Birth Defects Orig. Arctic Ser. 14, 303–305 (1978).

    CAS  Google Scholar 

  5. Satoda, M., Pierpont, M.E.M., Diaz, G.A. & Gelb, B.D. Char syndrome, an inherited disorder with patent ductus arteriosus, maps to chromosome 6p12–p21. Circulation 99, 3036–3042 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Moser, M. et al. Cloning and characterization of a second AP-2 transcription factor: AP-2β. Development 121, 2779– 2788 (1995).

    CAS  PubMed  Google Scholar 

  7. Davidson, H.R. A large family with patent ductus arteriosus and unusual face. J. Med. Genet. 30, 503–505 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Williams, T. & Tjian, R. Characterization of a dimerization motif in AP-2 and its function in heterologous DNA-binding proteins. Science 251, 1067–1071 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  9. Williams, T. & Tjian, R. Analysis of the DNA-binding and activation properties of the human transcriptional factor AP-2. Genes Dev . 5, 670–682 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  10. Kannan, P. & Tainsky, M.A. Coactivator PC4 mediates AP-2 transcriptional activity and suppresses ras-induced transformation dependent on AP-2 transcriptional interference. Mol. Cell. Biol. 19, 899–908 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kannan, P., Yu, Y., Wankhade, S. & Tainsky, M.A. PolyADP-ribose polymerase is a coactivator for AP-2-mediated transcriptional activation. Nucleic Acids Res. 27, 866–874 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lüscher, B., Mitchell, P.J., Williams, T. & Tjian, R. Regulation of transcription factor AP-2 by the morphogen retinoic acid and by second messengers. Genes Dev. 3, 1507 –1517 (1989).

    Article  PubMed  Google Scholar 

  13. Mitchell, P.J., Timmons, P.M., Hébert, J.M., Rigby, P.W.J. & Tjian, R. Transcriptional factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev. 5, 105–119 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  14. Philipp, J., Mitchell, P.J., Malipiero, U. & Fontana, A. Cell type-specific regulation of expression of transcription factor AP-2 in neuroectodermal cells. Dev. Biol. 165, 602 –614 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Moser, M., Rüschoff, J. & Buettner, R. Comparative analysis of AP-2α and AP-2β gene expression during mouse embryogenesis. Dev. Dyn. 208 , 115–124 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Moser, M. et al. Enhanced apoptotic cell death of renal epithelial cell in mice lacking transcriptional factor AP-2β. Genes Dev. 11, 1938–1948 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kirby, M.L., Gale, T.F. & Stewart, D.E. Neural crest cells contribute to normal aorticopulmonary septation. Science 220, 1059– 1061 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. Waldo, K.L. & Kirby, M.L. Cardiac neural crest contribution to the pulmonary artery and sixth aortic arch artery complex in chick embryos aged 6 to 18 days. Anat. Rec. 237, 385– 399 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Conway, S.J., Henderson, D.J. & Copp, A.J. Pax3 is required for cardiac neural crest migration in the mouse: evidence from the splotch (Sp2H) mutant . Development 124, 505– 514 (1997).

    CAS  PubMed  Google Scholar 

  20. Fukiishi, Y. & Morriss-Kay, G.M. Migration of cranial neural crest cells to the pharyngeal arches and heart in rat embryos. Cell Tiss. Res. 268, 1–8 (1992).

    Article  CAS  Google Scholar 

  21. Nishibatake, M., Kirby, M.L. & van Mierop, L.H. Pathogenesis of persistent truncus arteriosus and dextraposed aorta in the chick embryo after neural crest ablation. Circulation 75, 255–264 (1987).

    Article  CAS  PubMed  Google Scholar 

  22. Yanagisawa, H. et al. Role of endothelin-1/endothelin-a receptor-mediated signaling pathway in the aortic arch patterning in mice. J. Clin. Invest . 102, 22–33 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Franz, T. Persistent truncus arteriosus in the Splotch mutant mouse. Anat. Embryol. 180, 457–474 ( 1989).

    Article  CAS  Google Scholar 

  24. Epstein, D.J., Vekemans, M. & Gros, P. splotch (Sp2h), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3 . Cell 67, 767–774 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Reaume, A.G. et al. Cardiac malformation in neonatal mice lacking connexin43. Science 267, 1831–1834 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  26. Ewart, J.L. et al. Heart and neural tube defects in transgenic mice overexpressing the Cx43 gap junction gene. Development 124, 1281–1292 (1997).

    CAS  PubMed  Google Scholar 

  27. Sullivan, R. et al. Heart malformations in transgenic mice exhibiting dominant negative inhibition of gap junctional communication in neural crest cells . Dev. Biol. 204, 224–234 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Waldo, K.L., Lo, C.W. & Kirby, M.L. Connexin 43 expression reflects neural crest patterns during cardiovascular development. Dev. Biol. 208, 307–323 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Wilson, G.N. Correlated heart/limb anomalies in Mendelian syndromes provide evidence for a cardiomelic developmental field. Am. J. Med. Genet. 76, 297–305 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Basson, C.T. et al. Mutations in human cause limb and cardiac malformation in Holt-Oram syndrome. Nature Genet. 15, 30 –35 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Li, Q.Y. et al. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nature Genet. 15, 21–29 (1997).

    Article  PubMed  Google Scholar 

  32. Bamshad, M. et al. Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nature Genet. 16, 311–315 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Lens, X.M. et al. An integrated genetic and physical map of the autosomal recessive polycystic kidney disease region. Genomics 41, 463–466 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the two Char family members for their participation and J. Licht for critical reading of this manuscript. This study was supported in part by NIH grants to B.D.G. (HD01294 and HD38018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce D. Gelb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satoda, M., Zhao, F., Diaz, G. et al. Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Nat Genet 25, 42–46 (2000). https://doi.org/10.1038/75578

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75578

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing