Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system

Abstract

The development of non-viral gene-transfer technologies that can support stable chromosomal integration and persistent gene expression in vivo is desirable. Here we describe the successful use of transposon technology for the nonhomologous insertion of foreign genes into the genomes of adult mammals using naked DNA. We show that the Sleeping Beauty transposase can efficiently insert transposon DNA into the mouse genome in approximately 5–6% of transfected mouse liver cells. Chromosomal transposition resulted in long-term expression (>5 months) of human blood coagulation factor IX at levels that were therapeutic in a mouse model of haemophilia B. Our results establish DNA-mediated transposition as a new genetic tool for mammals, and provide new strategies to improve existing non-viral and viral vectors for human gene therapy applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transposition in cultured mammalian cells.
Figure 2: Sleeping Beauty mediates transposition into the mouse genome.
Figure 3: β-galactosidase expression in mouse liver following administration of transposition vectors.
Figure 4: Sleeping Beauty mediates long-term transgene expression in adult mice.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Kovesdi, I., Brough, D.E., Bruder, J.T. & Wickham, T.J. Adenoviral vectors for gene transfer. Curr. Opin. Biotechnol. 8, 583–589 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Latchman, D.S. Herpes simplex virus vectors for gene therapy. Mol. Biotechnol . 2, 179–195 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  3. Gordon, E.M. & Anderson, W.F. Gene therapy using retroviral vectors. Curr. Opin. Biotechnol. 5, 611– 616 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Naldini, L. Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr. Opin. Biotechnol. 9, 457–463 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Rabinowitz, J.E. & Samulski, J. Adeno-associated virus expression systems for gene transfer. Curr. Opin. Biotechnol . 9, 470–475 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  6. Kay, M.A. et al. In vivo gene therapy of hemophilia B: sustained partial correction in factor IX-deficient dogs. Science 262, 117–119 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Miao, C.H. et al. The kinetics of rAAV integration in the liver. Nature Genet. 19, 13–15 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  8. Snyder, R.O. et al. Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors. Nature Med. 5, 64–70 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Nakai, H., Iwaki, Y., Kay, M.A. & Couto, L.B. Isolation of recombinant adeno-associated virus vector-cellular DNA junctions from mouse liver. J. Virol. 73, 5438–5447 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Park, F., Ohashi, K., Chiu, W., Naldini, L. & Kay, M.A. Efficient lentiviral transduction of liver requires cell cycling in vivo. Nature Genet. 24, 49–52 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Zhu, J. et al. Characterization of replication-competent adenoviral isolates from large-scale production of a recombinant adenoviral vector. Hum. Gene Ther. 10, 113–121 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  12. Yang, Y., Li, Q., Ertl, H.C. & Wilson, J.M. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J. Virol. 69, 2004–2015 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kay, M.A. et al. Transient immunomodulation with anti-CD40 ligand antibody and CTLA4Ig enhances persistence and secondary adenovirus-mediated gene transfer into mouse liver. Proc. Natl Acad. Sci. USA 94, 4684–4691 (1997).

    Google Scholar 

  14. Hernandez, Y.J. et al. Latent adeno-associated virus infection elicits humoral but not cell-mediated immune responses in a nonhuman primate model. J. Virol. 73, 8549–8558 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, F., Song, Y.K. & Liu, D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 6, 1258– 1266 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, G., Budker, V. & Wolff, J.A. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum. Gene Ther . 10, 1735–1737 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  17. Yew, N.S. et al. Optimization of plasmid vectors for high-level expression in lung epithelial cells. Hum. Gene Ther. 8, 575–584 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Wolff, J.A. et al. Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  19. Choate, K.A. & Khavari, P.A. Direct cutaneous gene delivery in a human genetic skin disease. Hum. Gene Ther. 8, 1659–1665 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Li, K., Welikson, R.E., Vikstrom, K.L. & Leinwand, L.A. Direct gene transfer into the mouse heart. J. Mol. Cell. Cardiol . 29, 1499–1504 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  21. Alino, S.F. et al. Expression of human α-1-antitrypsin in mouse after in vivo gene transfer to hepatocytes by small liposomes. Biochem. Biophys. Res. Comm. 204, 1023–1030 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Caplen, N.J. et al. Liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nature Med. 1, 39–46 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Mumper, R.J. et al. Polyvinyl derivatives as novel interactive polymers for controlled gene delivery to muscle. Pharm. Res. 13, 701–709 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Perales, J.C., Ferkol, T., Molas, M. & Hanson, R.W. An evaluation of receptor-mediated gene transfer using synthetic DNA-ligand complexes. Eur. J. Biochem. 226, 255–266 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Plasterk, R.H.A. The Tc1/mariner transposon family. Curr. Top. Microbiol. Immunol . 204, 125–143 ( 1996).

    CAS  PubMed  Google Scholar 

  26. Lampe, D.J., Churchill, M.E.A. & Robertson, H.M. A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J. 15, 5470 –5479 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vos, J.C., De Baere, I. & Plasterk, R.H.A. Transposase is the only nematode protein required for in vitro transposition of Tc1. Genes Dev. 10, 755–761 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Coates, C.J., Jasinskiene, N., Miyashiro, L. & James, A.A. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc. Natl Acad. Sci. USA 95, 3748 –3751 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Raz, E., van Luenen, H.G., Schaerringer, B. & Plasterk, R.H.A. Transposition of the nematode Caenorhabditis elegans Tc3 element in the zebrafish Danio rerio. Curr. Biol. 8, 82– 88 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Sherman, A. et al. Transposition of the Drosophila element mariner into the chicken germ line. Nature Biotechnol. 16, 1013– 1017 (1998).

    Article  Google Scholar 

  31. Ivics, Z., Hackett, P.B., Plasterk, R.H. & Izsvak, Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–510 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Luo, G., Ivics, Z., Izsvak, Z. & Bradley, A. Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proc. Natl Acad. Sci. USA 95, 10769–10773 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lohe, A.R., Aguiar, D.D. & Hartl, D.L. Mutations in the mariner transposase: the D,D(35)E consensus sequence is nonfunctional. Proc. Natl Acad. Sci. USA 94, 1293–1297 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kafri, T., Blomer, U., Peterson, D.A., Gage, F.H. & Verma, I.M. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nature Genet . 17, 314–317 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  35. Koeberl, D.D., Alexander, I.E., Halbert, C.L., Russell, D.W. & Miller, A.D. Persistent expression of human clotting factor IX from mouse liver after intravenous injection of adeno-associated virus vectors. Proc. Natl Acad. Sci. USA 94, 1426–1431 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xiao, W. et al. Adeno-associated virus as a vector for liver-directed gene therapy . J. Virol. 72, 10222–10226 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miao, C.H. et al. Non-random transduction of recombinant adeno-associated viral vectors in mouse hepatocytes in vivo: cell cycling is not required for transduction . J. Virol. 74, 3793–3803 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reiner, A.P. & Davie, E.W. in The Metabolic and Molecular Basis of Inherited Disease (eds Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) (McGraw-Hill, New York, 1995).

    Google Scholar 

  39. Lampe, D.J., Grant, T.E. & Robertson, H.M. Factors affecting transposition of the Himar1 mariner transposon in vitro. Genetics 149, 179– 187 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hartl, D.L., Lozovskaya, E.R., Nurminsky, D.I. & Lohe, A.R. What restricts the activity of mariner-like transposable elements? Trends Genet. 13, 197–201 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Lohe, A.R., Sullivan, D.T. & Hartl, D.L. Subunit interactions in the mariner transposase. Genetics 144, 1087–1095 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin, H.F., Maeda, N., Smithies, O., Straight, D.L. & Stafford, D.W. A coagulation factor IX-deficient mouse model for human hemophilia B. Nature Med. 90, 3962 –3966 (1997).

    CAS  Google Scholar 

  43. Kay, M.A. & Fausto, N. Liver regeneration: prospects for therapy based on new technologies. Mol. Med. Today 3, 108–115 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, L., Sankar, U., Lampe, D.J., Robertson, H.M. & Graham, F.L. The Himarl mariner transposase cloned in a recombinant adenovirus vector is functional in mammalian cells. Nucleic Acids Res. 26, 3687–3693 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schouten, G.J., van Luenen, H.G., Verra, N.C., Valerio, D. & Plasterk, R.H. Transposon Tc1 of the nematode Caenorhabditis elegans jumps in human cells. Nucleic Acids Res . 26, 3013–3017 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Plasterk, R.H.A., Izsvak, Z. & Ivics, Z. Resident aliens. Trends Genet. 15, 326–332 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Kay, M.A., Graham, F., Leland, F. & Woo, S.L.C. Therapeutic serum concentrations of human α-1-antitrypsin after adenoviral-mediated gene transfer into mouse hepatocytes. Hepatology 21, 815–819 (1995).

    CAS  PubMed  Google Scholar 

  48. Walter, J., You, Q., Hagstrom, J.N., Sands, M. & High, K.A. Successful expression of human factor IX following repeat administration of adenoviral vector in mice. Proc. Natl Acad. Sci. USA 93, 3056–3061 ( 1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lieber, A., He, C.-Y., Kirllova, I. & Kay, M.A. Recombinant adenoviruses with large deletions generated by Cre-mediated excision exhibit different biological properties compared with first-generation vectors in vitro and in vivo. J. Virol. 70, 8944– 8960 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rutledge, E.A. & Russell, D.W. Adeno-associated virus vector integration junctions. J. Virol. 71, 8429–8436 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Nakai and K. Ohashi for their advice and technical assistance, and A. McCaffrey for critical reading of this manuscript. This work was supported by NIH grant DK49022 (M.A.K.). S.R.Y was the recipient of a PHS NRS award T32 GM07270 from NIGMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Kay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yant, S., Meuse, L., Chiu, W. et al. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat Genet 25, 35–41 (2000). https://doi.org/10.1038/75568

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75568

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing