Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Shotgun sample sequence comparisons between mouse and human genomes

Abstract

A mixed ‘clone-by-clone’ and ‘whole-genome shotgun’ strategy will be used to determine the genomic sequence of the mouse. This method will allow a phase of rapid annotation of the contemporaneous human sequence draft, through whole-genome ‘sample sequence comparisons’.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of random shotgun reads from the mouse genome with human sequences rapidly identifies regions of potential biological importance.

Similar content being viewed by others

References

  1. Ansari-Lari, M.A. et al. Comparative sequence analysis of a gene-rich cluster at human chromosome 12p13 and its syntenic region in mouse chromosome 6. Genome Res. 8, 29–40 ( 1998).

    CAS  PubMed  Google Scholar 

  2. Hardison, R.C., Oeltjen, J. & Miller, W. Long human-mouse sequence alignments reveal novel regulatory elements: a reason to sequence the mouse genome. Genome Res. 7, 959–966 (1997).

    Article  CAS  Google Scholar 

  3. Touchman, J.W. et al. The genomic region encompassing the nephropathic cystinosis gene (CTNS): complete sequencing of a 200-kb segment and discovery of a novel gene within the common cystinosis-causing deletion. Genome Res . 10, 165–173 ( 2000).

    Article  CAS  Google Scholar 

  4. Koop, B.F. et al. Organization, structure, and function of 95 kb of DNA spanning the murine T-cell receptor C α/C δ region. Genomics 13, 1209–1230 ( 1992).

    Article  CAS  Google Scholar 

  5. Oeltjen, J.C. et al. Large-scale comparative sequence analysis of the human and murine Bruton's tyrosine kinase loci reveals conserved regulatory domains . Genome Res. 7, 315–329 (1997).

    Article  CAS  Google Scholar 

  6. Myers, M.P., Rothenfluh, A., Chang, M. & Young, M.W. Comparison of chromosomal DNA composing timeless in Drosophila melanogaster and D. virilis suggests a new conserved structure for the TIMELESS protein . Nucleic Acids Res. 25, 4710– 4714 (1997).

    Article  CAS  Google Scholar 

  7. The C. elegans Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998); errata: 283, 35 (1999); 283 , 2103 (1999); 285, 1493 (1999).

  8. Tunnicliffe, G.R., Gloeckner, G., Elgar, G.S., Brenner, S. & Rosenthal, A. Comparative analysis of the PCOLCE region in Fugu Rubripes using a new automated annotation tool. Mamm. Genome 11, 213–219 (2000).

    Article  CAS  Google Scholar 

  9. Carver, E.A. & Stubbs, L. Zooming in on the human-mouse comparative map: genome conservation re-examined on a high-resolution scale. Genome Res. 7, 1123–1137 (1997).

    Article  CAS  Google Scholar 

  10. Smit, A.F. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr. Opin. Genet. Dev. 9, 657– 663 (1999).

    Article  CAS  Google Scholar 

  11. Collins, F.S. et al. New goals for the U.S. Human Genome Project: 1998–2003 . Science 282, 682–689 (1998).

    Article  CAS  Google Scholar 

  12. Battey, J., Jordan, E., Cox, D. & Dove, W. An action plan for mouse genomics. Nature Genet. 21, 73– 75 (1999).

    Article  CAS  Google Scholar 

  13. Pennisi, E. Genomics. Mouse sequencers take up the shotgun. Science 287, 1179 (1181).

    Article  Google Scholar 

  14. Adams, M.D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 ( 2000).

    Article  Google Scholar 

  15. Bouck, J., Miller, W., Gorrell, J.H., Muzny, D. & Gibbs, R.A. Analysis of the quality and utility of random shotgun sequencing at low redundancies. Genome Res. 8, 1074–1084 (1998).

    Article  CAS  Google Scholar 

  16. Andersson, B., Wentland, M.A., Ricafrente, J.Y., Liu, W. & Gibbs, R.A. A “double adaptor” method for improved shotgun library construction. Anal. Biochem. 236, 107–113 (1996).

    Article  CAS  Google Scholar 

  17. Metzker, M.L., Lu, J. & Gibbs, R.A. Electrophoretically uniform fluorescent dyes for automated DNA sequencing . Science 271, 1420–1422 (1996).

    Article  CAS  Google Scholar 

  18. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  19. Bouck, J., McLeod, M.P., Worley, K. & Gibbs, R. The human transcript database: a catalogue of full length cDNA inserts. Bioinformatics (in press).

Download references

Acknowledgements

J.B., M.M. and R.G. are supported by grant number HG02139 from the National Human Genome Research Institute at the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Bouck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouck, J., Metzker, M. & Gibbs, R. Shotgun sample sequence comparisons between mouse and human genomes. Nat Genet 25, 31–33 (2000). https://doi.org/10.1038/75563

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75563

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing