Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genetic and epigenetic incompatibilities underlie hybrid dysgenesis in Peromyscus

Abstract

Crosses between the two North American rodent species Peromyscus polionotus (PO) and Peromyscus maniculatus (BW) yield parent-of-origin effects on both embryonic and placental growth1,2. The two species are approximately the same size, but a female BW crossed with a male PO produces offspring that are smaller than either parent. In the reciprocal cross, the offspring are oversized and typically die before birth. Rare survivors are exclusively female, consistent with Haldane's rule, which states that in instances of hybrid sterility or inviability, the heterogametic sex tends to be more severely affected3. To understand these sex- and parent-of-origin-specific patterns of overgrowth, we analysed reciprocal backcrosses. Our studies reveal that hybrid inviability is partially due to a maternally expressed X-linked PO locus and an imprinted paternally expressed autosomal BW locus. In addition, the hybrids display skewing of X-chromosome inactivation in favour of the expression of the BW X chromosome. The most severe overgrowth is accompanied by widespread relaxation of imprinting of mostly paternally expressed genes. Both genetic and epigenetic mechanisms underlie hybrid inviability in Peromyscus and hence have a role in the establishment and maintenance of reproductive isolation barriers in mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic analysis of (F1×BW) hybrid Peromyscus.
Figure 2: Allelic expression of X-linked genes in Peromyscus hybrids.
Figure 3: Genetic analysis of placental weight in (PO×F1) hybrid Peromyscus.
Figure 4: Allelic expression of imprinted genes in (PO×F1) hybrid placentas.
Figure 5: Genetic analysis of placental weight in F2 hybrid Peromyscus.

Similar content being viewed by others

References

  1. Dawson, W.D. Fertility and size inheritance in a Peromyscus species cross. Evolution 19, 44–55 (1965).

    Article  Google Scholar 

  2. Rogers, J.F. & Dawson, W.D. Foetal and placental size in a Peromyscus species cross. J. Reprod. Fertil. 21, 255–262 (1970).

    Article  CAS  PubMed  Google Scholar 

  3. Haldane, J.S.B. Sex-ratio and unidirectional sterility in hybrid animals. J. Genet. 12, 101–109 (1922).

    Article  Google Scholar 

  4. Gray, A.P. Mammalian Hybrids (Commonwealth Agricultural Bureaux, Farnham Royal, Slough, England, 1972).

    Google Scholar 

  5. Vrana, P.B., Guan, X.-J., Ingram, R.S. & Tilghman, S.M. Genomic imprinting is disrupted in interspecific Peromuscus hybrids. Nature Genet. 20, 362–365 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Tilghman, S.M. The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell 96, 185–193 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Takagi, N. & Sasaki, M. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256, 640–642 (1975).

    Article  CAS  PubMed  Google Scholar 

  8. Cattanach, B.M., Perez, J.N. & Pollard, C.E. Controlling elements in the mouse X-chromosome. II. Location in the linkage map. Genet. Res. 15, 183–195 (1970).

    Article  CAS  PubMed  Google Scholar 

  9. Cattanach, B.M. & Williams, C.E. Evidence of non-random X chromosome activity in the mouse. Genet. Res. 19, 229–240 (1972).

    Article  CAS  PubMed  Google Scholar 

  10. Penny, G.D., Kay, G.F., Sheardown, S.A., Rastan, S. & Brockdroff, N. Requirement for Xist in X chromosome inactivation. Nature 379, 131–137 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Marahrens, Y., Panning, B., Dausman, J., Strauss, W. & Jaenisch, R. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev. 11, 156–166 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Simmler, M.C., Cattanach, B.M., Rasberry, C., Rougeulle, C. & Avner, P. Mapping the murine Xce locus with (CA)n repeats. Mamm. Genome 4, 523–530 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Clerc, P. & Avner, P. Role of the region 3′ to Xist exon 6 in the counting process of X-chromosome inactivation. Nature Genet. 19, 249–253 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Dawson, W.D. et al. Mus and Peromyscus chromosome homology established by FISH with three mouse paint probes. Mamm. Genome 10, 730–733 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Kaneko-Ishino, T. et al. Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization. Nature Genet. 11, 52–59 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Muller, H. Isolating mechanisms, evolution and temperature. Biol. Symp. 6, 71–125 (1942).

    Google Scholar 

  17. Dobzhansky, T. Genetics and the Origin of Species (Columbia University Press, New York, 1937).

    Google Scholar 

  18. Turelli, M. & Orr, H.A. The dominance theory of Haldane's rule. Genetics 140, 389–402 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zeng, L.-W. Ressurecting Muller's theory of Haldane's rule. Genetics 143, 603–607 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Coyne, J. & Orr, H.A. Patterns of speciation in Drosophila. Evolution 43, 362–381 (1989).

    Article  PubMed  Google Scholar 

  21. Pilia, G. et al. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nature Genet. 12, 241–247 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Zechner, U. et al. An X-chromosome linked locus contributes to abnormal placental development in mouse interspecific hybrids. Nature Genet. 12, 398–403 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Li, Y. & Behringer, R.R. Esx1 is an X-chromosome-imprinted regulator of placental development and fetal growth. Nature Genet 20, 309–311 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Relaix, F., Wei, X.J., Wu, X. & Sassoon, D.A. Peg3/Pw1 is an imprinted gene involved in the TNF-NFκB signal transduction pathway. Nature Genet. 18, 287–291 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Li, L. et al. Regulation of maternal behavior and offspring growth by paternally expressed Peg3. Science 284, 330–333 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Auffray, C. & Rougeon, F. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur. J. Biochem. 107, 303–314 (1980).

    Article  CAS  PubMed  Google Scholar 

  27. Lyons, L.A. et al. Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes. Nature Genet. 15, 47–56 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Shin, M.K., Russell, L.B. & Tilghman, S.M. Molecular characterization of four induced alleles at the Ednrb locus. Proc. Natl Acad. Sci. USA 94, 13105–13110 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Darvasi, A. & Soller, M. Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141, 1199–1207 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Manly, K.F. & Olson, J.M. Overview of QTL mapping software and introduction to map manager QT. Mamm. Genome 10, 327–334 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Dawson for advice on Peromyscus and support, and R.S. Ingram for DNA sequencing. This work was supported by a grant from the NIGMS (GM51460). S.M.T. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirley M. Tilghman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vrana, P., Fossella, J., Matteson, P. et al. Genetic and epigenetic incompatibilities underlie hybrid dysgenesis in Peromyscus. Nat Genet 25, 120–124 (2000). https://doi.org/10.1038/75518

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75518

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing