Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dopamine is required for hyperphagia in Lepob/ob mice

Abstract

Feeding is a complex process responsive to sensory information related to sight and smell of food, previous feeding experiences, satiety signals elicited by ingestion and hormonal signals related to energy balance. Dopamine released in specific brain regions is associated with pleasurable and rewarding events1,2 and may reinforce positive aspects of feeding. Dopamine also influences initiation and coordination of motor activity and is required for sensorimotor functions3,4,5. Thus, dopamine may facilitate integration of sensory cues related to hunger, initiating the search for food and its consumption. Dopaminergic neurons in the substantia nigra and ventral tegmental area project to the caudate putamen and nucleus accumbens, where they modulate movement and reward2,6,7,8. There are projections from the nucleus accumbens to the lateral hypothalamus that regulate feeding9. Dopamine-deficient mice (DbhTh/+, Th−/−; hereafter DD mice) cannot synthesize dopamine in dopaminergic neurons. They gradually become aphagic and die of starvation. Daily treatment of DD mice with L-3,4-dihydroxyphenylalanine (L-DOPA) transiently restores brain dopamine, locomotion and feeding. Leptin-null (Lepob/ob) mice exhibit obesity, decreased energy expenditure and hyperphagia. As the hypothalamic leptin-melanocortin pathway appears to regulate appetite and metabolism10, we generated mice lacking both dopamine and leptin (DD×Lepob/ob) to determine if leptin deficiency overcomes the aphagia of DD mice. DD×Lepob/ob mice became obese when treated daily with L-DOPA, but when L-DOPA treatment was terminated the double mutants were capable of movement, but did not feed. Our data show that dopamine is required for feeding in leptin-null mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth curves and body composition of wild-type (n = 8), DD (n = 8), Lepob/ob (n = 4) and DD×Lepob/ob (n = 4) mice.
Figure 2: Food intake of 100-day-old wild-type, DD, Lepob/ob and DD×Lepob/ob mice.
Figure 3: Ambulatory activity.

Similar content being viewed by others

References

  1. Hernandez, L. & Hoebel, B.G. Feeding and hypothalamic stimulation increase dopamine turnover in the accumbens. Physiol. Behav. 44, 599–606 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Koob, G.F. The role of the striatopallidal and extended amygdala systems in drug addiction. Ann. NY Acad. Sci. 877, 445–460 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Cousins, M.S. & Salamone, J.D. Skilled motor deficits in rats induced by ventrolateral striatal dopamine depletions: behavioral and pharmacological characterization. Brain Res. 732, 186–194 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Graybiel, A.M., Aosaki, T., Flaherty, A.W. & Kimura, M. The basal ganglia and adaptive motor control. Science 265, 1826–1831 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Chase, T.N., Engber, T.M. & Mouradian, M.M. Contribution of dopaminergic and glutamatergic mechanisms to the pathogenesis of motor response complications in Parkinson's disease. Adv. Neurol. 69, 497–501 (1996).

    CAS  PubMed  Google Scholar 

  6. Self, D.W. & Nestler, E.J. Molecular mechanisms of drug reinforcement and addiction. Annu. Rev. Neurosci. 18, 463–495 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Graybiel, A.M., Hirsch, E.C. & Agid, Y. The nigrostriatal system in Parkinson's disease. Adv. Neurol. 53, 17–29 (1990).

    CAS  PubMed  Google Scholar 

  8. Albin, R.L., Young, A.B. & Penney, J.B. The functional anatomy of disorders of the basal ganglia. Trends Neurosci. 18, 63–64 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Maldonado-Irizarry, C.S., Swanson, C.J. & Kelley, A.E. Glutamate receptors in the nucleus accumbens shell control feeding behavior via the lateral hypothalamus. J. Neurosci. 15, 6779–6788 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marsh, D.J. et al. Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nature Genet. 21, 119–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Zhou, Q.Y. & Palmiter, R.D. Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83, 1197–1209 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Szczypka, M.S. et al. Feeding behaviour in dopamine-deficient mice. Proc. Natl Acad. Sci. USA 96, 12138–12143 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Szczypka, M.S. et al. Viral gene delivery selectively restores feeding and prevents lethality of dopamine-deficient mice. Neuron 22, 167–178 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Friedman, J.M. & Halaas, J.L. Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Elmquist, J.K., Maratos-Flier, E., Saper, C.B. & Flier, J.S. Unraveling the central nervous system pathways underlying responses to leptin. Nature Neurosci. 1, 445–450 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Spiegelman, B.M. & Flier, J.S. Adipogenesis and obesity: rounding out the big picture. Cell 87, 377–389 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Halaas, J.L. et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269, 543–546 (1995).

    CAS  PubMed  Google Scholar 

  18. Pelleymounter, M.A. et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269, 540–543 (1995).

    CAS  PubMed  Google Scholar 

  19. Campfield, L.A., Smith, F.J., Guisez, Y., Devos, R. & Burn, P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269, 546–549 (1995).

    CAS  PubMed  Google Scholar 

  20. Ahima, R.S. et al. Role of leptin in the neuroendocrine response to fasting. Nature 382, 250–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Rowland, N., Marshall, J.F., Antelman, S.M. & Edwards, D.J. Hypothalamic hyperphagia prevented by damage to brain dopamine-containing neurons. Physiol. Behav. 22, 635–640 (1979).

    Article  CAS  PubMed  Google Scholar 

  22. Hernandez, L. & Hoebel, B.G. Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measured by microdialysis. Life Sci. 42, 1705–1712 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Martel, P. & Fantino, M. Mesolimbic dopaminergic system activity as a function of food reward: a microdialysis study. Pharmacol. Biochem. Behav. 53, 221–226 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Robbins, T.W. & Everitt, B.J. Neurobehavioural mechanisms of reward and motivation. Curr. Opin. Neurobiol. 6, 228–236 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Andretic, R., Chaney, S. & Hirsh, J. Requirement of circadian genes for cocaine sensitization in drosophila. Science 285, 1066–1068 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Steiner, D. Weinshenker and D. Kim for helpful comments during the preparation of this manuscript. M.S.S. was supported by an NIH postdoctoral fellowship (HD-08121). This work was supported in part by an NIH grant to R.D.P. (HD-09172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Palmiter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szczypka, M., Rainey, M. & Palmiter, R. Dopamine is required for hyperphagia in Lepob/ob mice. Nat Genet 25, 102–104 (2000). https://doi.org/10.1038/75484

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75484

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing