Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A high observed substitution rate in the human mitochondrial DNA control region

Abstract

The rate and pattern of sequence substitutions in the mitochondrial DNA (mtDNA) control region (CR) is of central importance to studies of human evolution and to forensic identity testing. Here, we report a direct measurement of the intergenerational substitution rate in the human CR. We compared DNA sequences of two CR hypervariable segments from close maternal relatives, from 134 independent mtDNA lineages spanning 327 generational events. Ten substitutions were observed, resulting in an empirical rate of 1/33 generations, or 2.5/site/Myr. This is roughly twenty-fold higher than estimates derived from phylogenetic analyses. This disparity cannot be accounted for simply by substitutions at mutational hot spots, suggesting additional factors that produce the discrepancy between very near-term and long-term apparent rates of sequence divergence. The data also indicate that extremely rapid segregation of CR sequence variants between generations is common in humans, with a very small mtDNA bottleneck. These results have implications for forensic applications and studies of human evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vigilant, L., Pennington, R., Harpending, H., Kocher, T.D. & Wilson, A.C. Mitochondria! DNA sequence in single hairs from a southern African population. Proc. Natl. Acad. Sci. USA 86, 9350–9354 (1989).

    Article  CAS  Google Scholar 

  2. Horai, S. & Hayasaka, K. Intraspecific nucleotide sequence differences in the major noncoding region of human mitochondrial DNA. Am. J. Hum. Genet. 46, 828–842 (1990).

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K. & Wilson, A.C. African populations and the evolution of human mitochondrial DNA. Science 253, 1503–1507 (1991).

    Article  CAS  Google Scholar 

  4. Di Rienzo, A. & Wilson, A.C. Branching pattern in the evolutionary tree for human mitochondrial DNA. Proc. Natl. Acad. Sci. USA 88, 1597–1601 (1991).

    Article  CAS  Google Scholar 

  5. Ward, R.H., Frazier, B.L., Dew-Jager, K. & Pääabo, S. Extensive mitochondrial DNA diversity within a single Amerindian tribe. Proc. Natl. Acad. Sci. USA 88, 8720–8724 (1991).

    Article  CAS  Google Scholar 

  6. Stoneking, M., Sherry, S.T., Redd, A.J. & Vigilant, L. New approaches to dating suggest a recent age for human mtDNA ancestor. Phil. Trans. R. Soc. Lond. B 337, 167–175 (1992).

    Article  CAS  Google Scholar 

  7. Horai, S. et al. Peopling of the Americas, founded by four major lineages of mitochondrial. DNA. Mol. Biol. Evol. 10, 237ndash;47 (1993).

    PubMed  CAS  Google Scholar 

  8. Mountain, J.L. et al. Demographic history of India and mtDNA-sequence diversity. Am. J. Hum. Genet. 56, 979–992 (1995).

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Sajantila, A. et al. Genes and languages in Europe: an analysis of mitochondrial lineages. Genome Res. 5, 42–52 (1995).

    CAS  Google Scholar 

  10. Graven, L. et al. Evolutionary correlation between control region sequence and restriction polymorphisms in the mitochondrial genome of a large Senegalese Mandenka sample. Mol. Biol. Evol. 12, 334–345 (1995).

    PubMed  CAS  Google Scholar 

  11. Cann, R.L., Stoneking, M. & Wilson, A.C. Mitochondrial DNA and human evolution. Nature 325, 31–36 (1987).

    Article  CAS  Google Scholar 

  12. Merriwether, D.A. et al. The structure of human mitochondrial DNA variation. J. Mol. Evol. 33, 543–555 (1991).

    Article  CAS  Google Scholar 

  13. Ruvolo, M. A new Approach to Studying Modern Human Origins: Hypothesis Testing with Coalescence Time Distributions. Mol. Phylo. Evol. 5, 202–219 (1996).

    Article  CAS  Google Scholar 

  14. Chen, Y.-S., Torroni, A., Excoffier, L., Silvana Santachiara-Benerecetti, A. & Wallace, D.C. Analysis of mtDNA variation in African populations reveals the most ancient of all human continent-specific haplogroups. Am.J. Hum. Genet. 57, 133–149 (1995).

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Horai, S., Hayasaka, K., Kondo, R., Tsugane, K. & Takahata, N. African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc. Natl. Acad. Sci. USA 92, 532–536 (1995).

    Article  CAS  Google Scholar 

  16. Hasegawa, M. & Horai, S. Time of the deepest root for polymorphism in human mitochondrial DNA. J. Mol. Evol.. 32, 37–42 (1991).

    Article  CAS  Google Scholar 

  17. Horai, S. et al. Man's place in Hominoidea revealed by mitochondriaJ DNA genealogy. J. Mol. Evol. 35, 32–43 (1992).

    Article  CAS  Google Scholar 

  18. Pesole, G., Sbisa, E., Preparata, G. & Saccone, C. The evolution of the mitochondrial D-loop region and the origin of modern man. Mol. Biol. Evol. 9, 587–598 (1992).

    PubMed  CAS  Google Scholar 

  19. Hassegawa, M., Di Rienzo, A., Kocher, T.D. & Wilson, A.C. Toward a more accurate estimate for the human mitochondrial DNA tree. J. Mol. Evol. 37, 347–354 (1993).

    Article  Google Scholar 

  20. Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993).

    PubMed  CAS  Google Scholar 

  21. Wakeley, J. Substitution rate variation among sites in hypervariable region 1 of human mitochondrial DNA. J. Mol. Evol. 37, 613–623 (1993).

    Article  CAS  Google Scholar 

  22. Wills, C. When did Eve live? An evolutionary detective story. Evolution 49, 593–607 (1995).

    Article  Google Scholar 

  23. Ruvolo, M., Zehr, S., von Dornum, M., Pan, D., Chang, B. & Lin, J. Mitocondrial COII sequences and modern human origins. Mol. Biol. Evol. 10, 1115–1135 (1993).

    PubMed  CAS  Google Scholar 

  24. Adachi, J. & Hasegawa, M. Tempo and mode of synonymous substitutions in mitochondrial DNA of primates. Mol. Biol. Evol. 13, 200–208 (1996).

    Article  CAS  Google Scholar 

  25. Ginther, C., Issel-Tarver, L. & King, M.-C. Identifying individuals by sequencing mitochondrial DNA from teeth. Nature Genet. 2, 135–138, (1992).

    Article  CAS  Google Scholar 

  26. Piercy, R., Sullivan, K.M., Benson, N. & Gill, P. The application of mitochondrial DNA typing to the study of white Caucasian genetic identification. Int. J. Leg. Med. 106, 85–90 (1993).

    Article  CAS  Google Scholar 

  27. Holland, M.M. et al. Mitochondrial DNA sequence analysis of human skeletal remains: identification of remains from the Vietnam War. J. Forensic Sci. 38, 542–553, (1993).

    Article  CAS  Google Scholar 

  28. Holland, M.M. et al. Mitochondrial DNA sequence analysis of human remains. Crime Lab.Digest 22, 3–8 (1995).

    Google Scholar 

  29. Wilson, M., DiZinno, J.A., Polanskey, D., Replogle, J. & Budowle, B. Validation of mitochondrial DNA sequencing for forensic casework analysis. Int. J. Leg. Med. 108, 68–74 (1995).

    Article  CAS  Google Scholar 

  30. Gill, P. et al. Identification of the remains of the Romanov family by DNA analysis.. Nature Genet. 6, 130–135, (1994).

    Article  CAS  Google Scholar 

  31. Ivanov, P.L. et al. Mitochondrial DNA sequence heteroplasmy in the grand duke of Russia Georgji Romanov establishes the authenticity of the remains of Tsar Nicholas II. Nature Genet. 12, 417–420 (1996).

    Article  CAS  Google Scholar 

  32. Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981).

    Article  CAS  Google Scholar 

  33. Holland, M.M. et al. Identification of human remains using mitochondrial DNA sequencing: potential mother-child mutational events, in Advances in Forensic Haemogenetics(eds Bar, W., Fiori, A. & Rossi, U.) 399–406 (Springer Verlag, New York, 1994).

  34. Nei, M. Age of the common ancestor of human mitochondrial DNA. Mol. Biol. Evol. 9, 1176–1178 (1992).

    PubMed  CAS  Google Scholar 

  35. Ayala, F. The myth of Eve: molecular biology and human origins. Science 270, 1930–1936 (1995).

    Article  CAS  Google Scholar 

  36. Penny, D., Steel, M., Waddel, P.J. & Hendy, M.D. Improved analyses of human mtDNA sequences support a recent African origin for Homo sapiens . Mol. Biol. Evol. 12, 863–882 (1995).

    PubMed  CAS  Google Scholar 

  37. Howell, N., Kubacka, I. & Mackey, D.A. How rapidly does the human mitochondrial genome evolve? Am. J. Hum. Genet. 59, 501–509 (1996).

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Nachman, M.W., Brown, W.M., Stoneking, M. & Aquadro, C.F. Nonneutral mitochondrial DNA variation in humans and chimpanzees. Genetics 142, 953–963 (1996).

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Templeton, A.R. Contingency tests of neutrality using inta/interspecific gene trees: the rejection of neutrality for the evolution of the mitochondrial cytochrome oxidase II gene in the homonoid primates. Genetics 144, 1263–1270 (1996).

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Excoffier, L. Evolution of human mitochondrial DNA: evidence for departure from a pure neutral model of populations at equilibrium. J. Mol. Evol. 30, 125–139 (1990).

    Article  CAS  Google Scholar 

  41. Gemmel, N.J., Western, P.S., Watson, J.M. & Marshall Graves, J.A. Evolution of the mammalian mitochondrial control region — comparisons of control region sequences between monotreme and therian mammals. Mol. Biol. Evol. 13, 798–808 (1996).

    Article  Google Scholar 

  42. Hauswirth, W.W. & Laipis, P.J. Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc. Natl. Acad. Sci. USA 79, 4686–4690 (1982).

    Article  CAS  Google Scholar 

  43. Laipis, P., Hauswirth, W., O'Brian, T. & Michaels, G. Unequal partitioning of bovine mitochondrial genotypes among siblings. Proc. Natl. Acad. Sci. USA 85, 8107–8110 (1988).

    Article  CAS  Google Scholar 

  44. Solignac, M., Genermont, J., Monnerot, M. & Mounolou, J.C. Genetics of mitochondria in Drosophila: mtDNA in heteroplasmic strains of D. mauritiana. Mol. Gen. Genet. 197, 183–188 (1984).

    Article  CAS  Google Scholar 

  45. Poulton, J. Transmission of mtDNA: cracks in the bottleneck. Am. J. Hum. Genet. 57, 224–226 (1995).

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Bendall, K.E., Macaulay, V.A., Baker, J.R. & Sykes, B.C. Heteroplasmic point mutations in the human mtDNA control region. Am.J. Hum. Genet. 59, 1276–1287 (1996).

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Jenuth, J.P., Peterson, A.C., Fu, K. & Shoubridge, E.A. Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nature Genet. 14, 146–151 (1996).

    Article  CAS  Google Scholar 

  48. Comas, D., Pääbo, S. & Bertranpetit, J. Heteroplasmy in the control region of human mitochondrial DNA. Genome Res. 5, 89–90 (1995).

    Article  CAS  Google Scholar 

  49. Howell, N. et al. Mitochondrial gene segregation in mammals: Is the bottleneck always narrow? Hum. Genet. 90, 117–120 (1992).

    Article  CAS  Google Scholar 

  50. Walsh, P.S., Metzger, D.A. & Higuchi, R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10, 506–513 (1991).

    PubMed  CAS  Google Scholar 

  51. Miller, K.W.P., Dawson, J.L. & Hagelberg, E. A concordance of nucleotide substitutions in the first and second hypervariable segments of the human mtDNA control region. Int. J. Legal Med. 109, 107–113 (1996).

    Article  CAS  Google Scholar 

  52. SAS Procedures Guide, release 6.07, SAS Institute, Carey, NC (1991).

  53. Wilson, M.R., Stoneking, M., Holland, M.M., DiZinno, J.A. & Budowle, B. Guidelines for the use of mitochondrial DNA sequencing in forensic science. Crime Lab. Digest 20, 68–77 (1993).

    Google Scholar 

  54. Sullivan, K.H., Hopgood, R. & Gill, P. Identification of human remains by amplification and automated sequencing of mitochondrial DNA. Int. J. Leg. Med. 105, 83–86 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parsons, T., Muniec, D., Sullivan, K. et al. A high observed substitution rate in the human mitochondrial DNA control region. Nat Genet 15, 363–368 (1997). https://doi.org/10.1038/ng0497-363

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0497-363

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing