Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers

Abstract

Deletions involving regions of chromosome 10 occur in the vast majority (>90%) of human glioblastoma multiformes. A region at chromosome 10q23–24 was implicated to contain a tumour suppressor gene and the identification of homozygous deletions in four glioma cell lines further refined the location. We have identified a gene, designated MMAC1, that spans these deletions and encodes a widely expressed 5.5-kb mRNA. The predicted MMAC1 protein contains sequence motifs with significant homology to the catalytic domain of protein phosphatases and to the cytoskeletal proteins, tensin and auxilin. MMAC1 coding-region mutations were observed in a number of glioma, prostate, kidney and breast carcinoma cell lines or tumour specimens. Our results identify a strong candidate tumour suppressor gene at chromosome 10q23.3, whose loss of function appears to be associated with the oncogenesis of multiple human cancers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Louis, D.N. & Gusella, J.F. A tiger behind many doors: multiple genetic pathways to malignant glioma. Trends. Genet. 11, 412–415 (1995).

    Article  CAS  Google Scholar 

  2. 2

    Fults, D., Redone, C.A., Thomas, G.A. & White, R. Allelotype of human malignant astrocytoma. Cancer Res. 50, 5784–5789 (1990).

    PubMed  CAS  Google Scholar 

  3. 3

    Rahseed, B.K., Fuller, G.N., Friedman, A.M., Signer, D.D. & Signer, S.H. Loss of heterozygosity for 10q loci in human gliomas. Genes Chromosome Cancer 5, 75–82 (1992).

    Article  Google Scholar 

  4. 4

    Herbst, R.A., Weiss, J., Ehnis, A., Cavenee, W.K. & Arden, K.C. Loss of heterozygosity for 10q22-qter in malignant melanoma progression. Cancer Res. 54, 3111–3114 (1994).

    PubMed  CAS  Google Scholar 

  5. 5

    Rempel, S.A., Schwechheimer, K., Davis, R.L., Cavenee, W.K. & Rosenblum, M.L. Loss of heterozygosity for loci on chromosome 10 is associated with morphologically malignant meningioma progression. Cancer Res. 53, 2386–2392 (1993).

    PubMed  CAS  Google Scholar 

  6. 6

    Morita, R. et al. Common regions of deletion on chromosomes 5q, 6q, and 10q in renal cell carcinoma. Cancer Res. 51, 5817–5820 (1991).

    PubMed  CAS  Google Scholar 

  7. 7

    Eagle, L.R. et al. Mutation of the MX11 gene in prostate cancer. Nature Genet. 9, 249–255 (1995).

    Article  CAS  Google Scholar 

  8. 8

    Peterson, I. et al. Small-cell lung cancer is characterized by a high incidence of deletions on chromosomes 3p, 4q, 5q, 10q, 13q, and 17p. Brit. J. Cancer 75, 79–86 (1997).

    Article  Google Scholar 

  9. 9

    Peiffer, S.L. et al. Allelic loss of sequences from the long arm of chromosome 10 and replication errors in endometrial cancers. Cancer Res. 55, 1922–1926 (1995).

    PubMed  CAS  Google Scholar 

  10. 10

    Gray, I.C. et al. Loss of chromosomal region 10q23-25 in prostate cancer. Cancer Res. 55, 4800–4803 (1995).

    PubMed  CAS  Google Scholar 

  11. 11

    Trybus, T.M., Burgress, A.C., Wojno, K.J., Glover, T.W. & Macoska, J.A. Distinct areas of allelic loss on chromosomal regions 10p and 10q in human prostate cancer. Cancer Res. 56, 2263–2267 (1996).

    PubMed  CAS  Google Scholar 

  12. 12

    Ransom, D.T. et al. Correlation of cytogenetic analysis and loss of heterozygosity studies in diffuse astrocytomas and mixed oligo-astrocytomas. Genes Chromosome. Cancer 5, 357–374 (1992).

    Article  CAS  Google Scholar 

  13. 13

    Pershouse, M.A. et al. Analysis of the functional role of chromosome 10 loss in human glioblastomas. Cancer Res. 53, 5043–5050 (1993).

    PubMed  CAS  Google Scholar 

  14. 14

    Steck, P.A., Hadi, A., Cheong, H.C., Yung, W.K.A. & Pershouse, M.A. Evidence for two tumour suppressive loci on chromosome 10 involved in glioblastomas. Genes Chromosome. Cancer 12, 255–261 (1995).

    Article  CAS  Google Scholar 

  15. 15

    Church, D.M. et al. Isolation of genes from complex sources of mammalian genomic DNA using exon amplification. Nature Genet. 6, 98–105 (1994).

    Article  CAS  Google Scholar 

  16. 16

    Tavtigian, S.V. et al. The complete BCRA2 gene and mutations in chromosome 13q-linked kindreds. Nature Genet. 12, 333–337 (1996).

    Article  CAS  Google Scholar 

  17. 17

    Kozak, M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125–8148 (1987).

    Article  CAS  Google Scholar 

  18. 18

    Denu, J., Stuckey, J.A., Saper, D. & Dixon, J.E. Form and function in protein dephosphorylation. Cell 87, 361–364 (1996).

    Article  CAS  Google Scholar 

  19. 19

    Denu, J.M. & Dixon, J.E. A catalytic mechanism for the dual-specific phosphatase. Proc. Natl. Acad. Sci. USA 92, 5910–5914 (1995).

    Article  CAS  Google Scholar 

  20. 20

    Spruck, C.H. et al. p16 gene in uncultured tumours. Nature 370, 183–184 (1994).

    Article  Google Scholar 

  21. 21

    Herman, J.G. et al. Inactivation of the 2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 55, 4520–4530 (1995).

    Google Scholar 

  22. 22

    Chou, P.Y. & Fassman-Fasman, G.D. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from protein. Biochemistry 13, 211–222 (1974).

    Article  CAS  Google Scholar 

  23. 23

    von Diemling, A. et al. Association of epidermal growth factor receptor gene amplification with loss of chromosome 10 in human glioblastoma multiforme. J. Neurosurg. 77, 295–301 (1992).

    Article  Google Scholar 

  24. 24

    Tokiyoshi, K., Yoshimine, T., Maruno, M., Muhammad, A.K.M.G. & Hayakawa, T. Accumulation of allelic losses on chromosome 10 in human gliomas at recurrence. J. Clin. Pathol:Mol. Pathol. 49, 218–222 (1996).

    Google Scholar 

  25. 25

    Nihei, N. et al. Localization of a metastasis suppressor gene(s) for rat prostatic cancer to the long arm of human chromosome 10. Genes Chromosome. Cancer 14, 112–119 (1995).

    Article  CAS  Google Scholar 

  26. 26

    Albarosa, A., DiDonato, S. & Finocchiaro, G. Redefinition of the coding sequence of the MXI-1 gene and identification of a polymorphic repeat in the 3′ non-coding region that allows the detection of loss of heterozygosity of chromosome 10q25 in glioblastomas. Hum. Genet. 95, 709–711 (1995).

    Article  CAS  Google Scholar 

  27. 27

    Nelen, M.R. et al. Localization of the gene for Cowdens disease to 10q22-23. Nature Genet. 13, 114–116 (1996).

    Article  CAS  Google Scholar 

  28. 28

    Eng, C. et al. Cowden syndrome and Lhermitte-Duclos disease in a family: a single genetic syndrome with pleiotropy? J. Med. Genet. 31, 458–461 (1994).

    Article  CAS  Google Scholar 

  29. 29

    Teng, D.H.-F. et al. Low incidence of BRAC2 mutation in breast carcinoma and other cancers. Nature Genet. 13, 241–248 (1996).

    Article  CAS  Google Scholar 

  30. 30

    Barford, D., Flint, A.J. & Tonks, N.K. Crystal structure of human protein tyrosine phosphatase 1b. Science 263, 1397–1404 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Steck, P., Pershouse, M., Jasser, S. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15, 356–362 (1997). https://doi.org/10.1038/ng0497-356

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing