Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mouse Dax1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function

Abstract

Duplications of a chromosome Xp21 locus DSS (dosage sensitive sex reversal) are associated with male to female sex reversal. An unusual member of the nuclear hormone receptor superfamily, DAX1, maps to the DSS critical region and is responsible for X-linked adrenal hypoplasia congenita. Here we describe the isolation of the mouse Dax1 gene and its pattern of expression during development. Expression was detected in the first stages of gonadal and adrenal differentiation and in the developing hypothalamus. Moreover, Dax1 expression is down-regulated coincident with overt differentiation in the testis, but persists in the developing ovary. Comparison of the predicted protein products of the human and mouse genes show that specific domains are evolving rapidly. Our results suggest a basis for adrenal insufficiency and hypogonadotropic hypogonadism in males affected by adrenal hypoplasia congenita and are consistent with a role for DAX1 in gonadal sex determination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sinclair, A.H. et al. A gene from the human sex determining region encodes a protein with homology to a conserved DNA binding motif. Nature 346, 240–2454 (1990).

    Article  CAS  Google Scholar 

  2. Gubbay, J. et al. A gene mapping to the sex determining region of the mouse Y chromosome is a member of a new family of embryonically expressed genes. Nature 346, 245–250 (1990).

    Article  CAS  Google Scholar 

  3. Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P.N. & Lovell-Badge, R. Male development of chromosomally female mice transgenic for Sry . Nature 351, 117–121 (1991).

    Article  CAS  Google Scholar 

  4. Goodfellow, P.N. & Lovell-Badge, R. Sex and sex determination in mammals. Annu. Rev. Genet. 27, 71–92 (1993).

    Article  CAS  Google Scholar 

  5. Koopman, P., Munsterberg, A., Capel, B., Vivian, N. & Lovell-Badge, R. Expression of a candidate sex determining gene during mouse testis differentiation. Nature 348, 450–452 (1990).

    Article  CAS  Google Scholar 

  6. Hacker, A., Capel, B., Goodfellow, P. & Lovell-Badge, R. Expression of Sry, the mouse sex determining gene. Development 121: 1603–1614 (1995).

    CAS  Google Scholar 

  7. Jeske, Y.W.A., Bowles, J., Greenfield, A. & Koopman, P. Expression of a linear Sry transcript in the mouse genital ridge. Nature Genet. 10, 480–482 (1995).

    Article  CAS  Google Scholar 

  8. Nordqvist, K. & Lovell-Badge, R. Setbacks on the road to sexual fulfilment. Nature Genet. 7, 7–9 (1994).

    Article  CAS  Google Scholar 

  9. German, J. et al. Genetically determined sex-reversal in 46,XY humans. Science 202, 53–56 (1978).

    Article  CAS  Google Scholar 

  10. Fechner, P.Y. et al. Report of a kindred with X-linked (or autosomal dominant sex-limited) 46, XY partial gonadal dysgenesis. J. Clin. Endocr. Metab. 76, 1248–1252 (1993).

    CAS  PubMed  Google Scholar 

  11. Bardoni, B. et al. A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nature Genet. 7: 497–501 (1994).

    Article  CAS  Google Scholar 

  12. Dabovic, B. et al. A family of rapidly evolving genes from the sex reversal critical region in Xp21. Mammalian Genome (in the press).

  13. Zanaria, E. et al. An unusual member of the nuclear hormone receptor super-family responsible for X-linked adrenal hypoplasia congenita. Nature 372, 635–641 (1994).

    Article  CAS  Google Scholar 

  14. Muscatelli, R. et al. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 372, 672–676 (1994).

    Article  CAS  Google Scholar 

  15. Kozak, M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucl. Acids Res. 15, 8125–8148 (1987).

    Article  CAS  Google Scholar 

  16. Leid, M., Kastner, P. & Chambon, R. Multiplicity generates diversity in the retinoic acid signalling pathways. Trends Biochem. Sci. 17, 427–433 (1992).

    Article  CAS  Google Scholar 

  17. Chambon, R. The retinoid signalling pathway: molecular and genetic analysis. Semin. Cell Biol. 5, 115–125 (1994).

    Article  CAS  Google Scholar 

  18. Capel, B. & Lovell-Badge, R. The Sry gene and sex determination in mammals. Adv. Dev. Biol. 2, 1–35 (1993).

    Article  Google Scholar 

  19. Seidl, K. & Unsicker, K. The determination of the adrenal medullary cell fate during embryogenesis. Dev. Biol. 136, 481–490 (1989).

    Article  CAS  Google Scholar 

  20. Rogler, L.E. & Pintar, J.E. Expression of the P450 side-chain cleavage and adrenodoxin genes begins during early stages of adrenal cortex development. Mol. Endocr. 7, 453–461 (1993).

    CAS  Google Scholar 

  21. Buehr, M., Gu, S. & McLaren, A. Mesonephric contribution to testis differentiation in the fetal mouse. Developement 117, 273–281 (1992).

    Google Scholar 

  22. Whitfield, S., Lovell-Badge, R. & Goodfellow, P.N. Rapid sequence evolution ofthe sex determining gene SRY. Nature 364, 713–715 (1993).

    Article  CAS  Google Scholar 

  23. Tucker, P.K. & Lundrigan, B.L. Rapid evolution of the sex determining locus in Old World mice and rats. Nature 364, 715–717 (1993).

    Article  CAS  Google Scholar 

  24. Foster, J.W. et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372, 525–530 (1994).

    Article  CAS  Google Scholar 

  25. Wagner, T. et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9 . Cell 79, 1111–1120 (1994).

    Article  CAS  Google Scholar 

  26. Wright, E. et al. The Sry-related gene Sox-9 is expressed during chondrogenesis in mouse embryos. Nature Genet. 9, 15–20 (1995).

    Article  CAS  Google Scholar 

  27. Kreidberg, J.A. et al. Wt-1 is required for for early kidney development. Cell 74, 679–691 (1993).

    Article  CAS  Google Scholar 

  28. Mueller, R.F., Denys-Drash syndrome. J. Med. Genet. 31, 471–177 (1994).

    Article  CAS  Google Scholar 

  29. Luo, X. et al. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77, 481–490 (1994).

    Article  CAS  Google Scholar 

  30. Shen, W.-H. et al. Nuclear receptor steroidogenic factor 1 regulates the Mullerian inhibiting substance gene: a link to the sex determination pathway. Cell 77: 651–661 (1994).

    Article  Google Scholar 

  31. Bouget, W., Ruff, M., Chambon, P., Gronemeyer, H. & Moras, D. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-α. Nature 375, 377–382 (1995).

    Article  Google Scholar 

  32. Kletter, G.B., Gorski, J.L. & Kelch, R.P. Congenital adrenal hypoplasia and isolated gonadotropin deficiency. Trends Endocr. Met. 2, 123–128 (1991).

    Article  Google Scholar 

  33. Ingraham, H.A. et al. The nuclear receptor steroidogenic factor 1 acts at multiple levels ofthe reproductive axis. Genes Dev. 8, 2302–2312 (1994).

    Article  CAS  Google Scholar 

  34. Ikeda, Y., Luo, X., Abbud, R., Nilson, J. & Parker, K.L. The nuclear receptor steroidogenic factor 1 is essential for the formation of the ventromedial hypothalamic nucleus. Mol. Endocr. 9, 478–486 (1995).

    CAS  Google Scholar 

  35. Lovell-Badge, R. & Hacker, A. The molecular genetics of Sry and its role in mammalian sex determination. Phil. Trans. R. Soc. Lond. B. 350, 205–214 (1995).

    Article  CAS  Google Scholar 

  36. Haqq, C.M. et al. Molecular basis of mammalian sexual determination: activation of Mullerian inhibiting substance gene expression by SRY . Science 266, 1494–1500 (1994).

    Article  CAS  Google Scholar 

  37. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: A Laboratory Manual 2nd edn. (Cold Spring Harbor Laboratory Press, New York, 1989).

  38. Wilkinson, D. & Nieto, M.A. Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts, in Guide to Techniques in Mouse Development Methods in Enzymology, Vol. 225 (eds Wassarman, P.M. & DePamphilis, M.L.) 361–372 (Academic Press, New York, 1993).

    Chapter  Google Scholar 

  39. Chirgwin, J. et al. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  40. Dresser, D.W., Hacker, A., Lovell-Badge, R. & Guerrier, D. The genes for a spliceosome protein (SAP62) and the anti-Mullerian (AMH) are contiguous. Hum. Mol. Genet. 4, 1613–1618 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swain, A., Zanaria, E., Hacker, A. et al. Mouse Dax1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function. Nat Genet 12, 404–409 (1996). https://doi.org/10.1038/ng0496-404

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0496-404

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing