Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3

Abstract

Fibroblast growth factor receptor 3 (Fgfr3) is a tyrosine kinase receptor expressed in developing bone, cochlea, brain and spinal cord. Achondroplasia, the most common genetic form of dwarfism, is caused by mutations in FGFR3. Here we show that mice homozygous for a targeted disruption of Fgfr3 exhibit skeletal and inner ear defects. Skeletal defects include kyphosis, scoliosis, crooked tails and curvature and overgrowth of long bones and vertebrae. Contrasts between the skeletal phenotype and achondroplasia suggest that activation of FGFR3 causes achondroplasia. Inner ear defects include failure of pillar cell differentiation and tunnel of Corti formation and result in profound deafness. Our results demonstrate that Fgfr3 is essential for normal endochondral ossification and inner ear development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Basilico, C. & Moscatelli, D. The FGF family of growth factors and oncogenes. Adv. Cancer Res. 59, 115–165 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Muenke, M. & Schell, U. Fibroblast-growth-factor receptor mutations in human skeletal disorders. Trends Genet. 11, 308–313 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Johnson, D.E. & Williams, L.T. Structural and functional diversity in the FGF receptor multigenefamily Adv. Cancer. Res. 60, 1–41 (1993).

    CAS  PubMed  Google Scholar 

  4. Hebert, J.M., Rosenquist, T., Gotz, J. & Martin, G.R. FGF5 as a regulator of the hair growth cycle: Evidence from targeted and spontaneous mutations. Cell. 78, 1017–1025 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Feldman, B., Poueymirou, W., Papaioannou, V.E., DeChiara, T.M. & Goldfarb, M. Requirement of FGF-4 for postimplantation mouse development. Science. 267, 246–249 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Peters, K.G., Werner, S., Chen, G. & LT.Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development. 114, 233–243 (1992).

    CAS  PubMed  Google Scholar 

  7. Peters, K., Ornitz, D.M., Werner, S. & Williams, L. Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Dev. Biol. 155, 423–430 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Rousseau, F. et al. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature. 371, 252–254 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Shiang, R. et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarf ism, achondroplasia. Cell. 78, 335–342 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Tavormina, P.L. et al. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nature Genet. 9, 321–328 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Briner, J., Giedion, A. & Spycher, M.A. Variation of quantitative and qualitative changes of enchondral ossification in heterozygous achondroplasia. Pathol. Res. Pract. 187, 271–278 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Rimoin, D.L., Hughes, G.N., Kaufman, R.L., Rosenthal, R.E., McAlister, W.H. & Silberberg, R. Endochondral ossification in achondroplastic dwarfism. NewEngl. J. Med. 283, 728–735 (1970).

    CAS  Google Scholar 

  13. Meyers, G.A., Orlow, S.J., Munro, I.R. & Jabs, E.W. Fibroblast growth factor receptor 3 (FGFR3) transmembrane mutation in Crouzon syndrome with acanthosis nigricans. Nature Genet. 11, 462–464 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Chellaih, AT., McEwen, D.G., Werner, S., Xu, J & Ornitz, D.M. Fibroblast growth factor receptor (FGFR) 3: alternative splicing in immunoglobulin-like domain III creates a receptor highly specific for acidic FGF/FGF-1. J. Biol. Chem. 269, 11620–11627 (1994).

    Google Scholar 

  15. Caplan, A.I. & Pechak, D.G. The cellular and molecular embryology of bone formation, in Bone and Mineral Research Vol. 5. (ed. Peck, W. A.) 117–183. (Elsevier Science Publishers, New York, 1987).

  16. lannotti, J.P. Growth plate physiology and pathology. Orthop. Clin. North Am. 21, 1–17 (1990).

    Google Scholar 

  17. Kikuchi, K. & Hilding, D. The development of the organ of Corti in the mouse. Acta. Otolaryngol. (Stockh.) 60, 207–222 (1965).

    Article  CAS  PubMed  Google Scholar 

  18. Pinelli, V., Masi, R., Pierro, V. & Tieri, L Otologic impairments in achondroplasia: a nosologic assessment. In Human Achondroplasia. (ed. Nicoletti, B., Kopits, S.E., Ascani, E. & McKusick, V.A.) 149–152 (Plenum Press, New York & London, 1988).

    Chapter  Google Scholar 

  19. Engstrom, H., Ades, H.W. & Andersson, A. Structural pattern of the organ of Corti. (Almqvist & Wiksell, Stockholm, 1966).

  20. Mikaelian, D.O., Warfield, D. & Norris, O. Genetic progressive hearing loss in the C57/bl6 mouse. Acta Otolaryngol. 77, 327–334 (1974).

    Article  CAS  PubMed  Google Scholar 

  21. Ponseti, I.V. Skeletal growth in achondroplasia. J. Bone Joint Surg. Am. 52-A, 701–716 (1970).

    Article  Google Scholar 

  22. Kato, Y. & Iwamoto, M. Fibroblast growth factor is an inhibitor of chondrocyte terminal differentiation. J. Biol. Chem. 265, 5903–5909 (1990).

    CAS  PubMed  Google Scholar 

  23. Baron, J. et al. Induction of growth plate cartilage ossification by basic fibroblast growth factor. Endocrinology. 135, 2790–2793 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Pirvola, U. et al. The site of action of neuronal acidic fibroblast growth factor is the organ of Corti of the rat cochlea. Proc. Natl. Acad. Sci. USA. 92, 9269–9273 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ernfors, P., Van De Water, T., Loring, J. & Jaenisch, R. Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron. 14, 1153–1164 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Sidman, R.L., Green, M.C. & Appel, S.H. Catalog of the neurological mutants of the mouse. (Harvard University Press, Cambridge, Massachusetts, 1965).

  27. Tybulewicz, V.L.J., Crawford, C.E., Jackson, P.K., Bronson, R.T. & Mulligan, R.C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell. 65, 1153–1163 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Chisaka, O. & Capecchi, M.R. Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1. Nature. 350, 473–479 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Shen, M.M. . ef al. Expression of LIF in transgenic mice results in altered thymic epithelium and apparent interconversion of thymic and lymph node morphologies. EMBO J. 13, 1375–1385 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ornitz, D.M. & Leder, P. Ligand specificity and heparin dependence of fibroblast growth factor receptors 1 and 3. J. Biol. Chem. 267, 16305–16311 (1992).

    CAS  PubMed  Google Scholar 

  31. Perez-Castro, A.V., Wilson, J. & Altherr, M.R. Genomic organization of the mouse fibroblast growth factor receptor 3 (Fgfr3) gene. Genomics. 30, 157–162 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Lufkin, T, Dierich, A., LeMeur, M., Mark, M. & Chambon, P. Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell. 66, 1105–1119 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Wallin, J. et al. The role of Pax-1 in axial skeleton development. Development. 20, 1109–1121 (1994).

    Google Scholar 

  34. Bohne, B.A. Location of small cochlear lesions by phase contrast microscopy prior to thin sectioning. Laryngoscope. 82, 1–16 (1972).

    Article  CAS  PubMed  Google Scholar 

  35. Richardson, K.C., Jarrett, L & Finke, E.H. Embedding in epoxy resin for ultrathin sectioning for electron microscopy. Stain Tech. 35, 313–323 (1960).

    Article  CAS  Google Scholar 

  36. Henry, K.R. Auditory nerve and brain stem volume-conducted potentials evoked by pure-tone pips in the CBA/J laboratory mouse. Audiology. 18, 93–108 (1979).

    Article  CAS  PubMed  Google Scholar 

  37. Henry, K.R. & Chole, R.A. Cochlear electrical activity in the C57BL/6 laboratory mouse: volume-conducted vertex and round window responses. Acta Otolaryngol. 87, 61–68 (1979).

    Article  CAS  PubMed  Google Scholar 

  38. Davis, H. ef al. Acoustic trauma in the guinea pig. J. Acoust Soc. Am. 25, 1180–1189 (1953).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colvin, J., Bohne, B., Harding, G. et al. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 12, 390–397 (1996). https://doi.org/10.1038/ng0496-390

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0496-390

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing