Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clustered base substitutions in CTP synthetase conferring drug resistance in Chinese hamster ovary cells

Abstract

Dominantly acting mutations that eliminate the allosteric regulation of CTP synthetase confer a form of multidrug resistance and a mutator phenotype to cultured Chinese hamster ovary cells. Mutations responsible for this phenotype have been identified in 23 independent strains selected for resistance to arabinosyl cytosine and 5-fluorouracil. All these mutations were due to base substitutions at seven sites within a highly conserved region of the ctps gene. This clustering should make it feasible to assess the role of such mutations in the development of drug resistance encountered in the treatment of malignant disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bradley, G., Jaranka, P.F. & Ling, V. Mechanism of multidrug resistance. Biochim. Biophys. Acta 948, 87–128 (1988).

    CAS  PubMed  Google Scholar 

  2. Pastan, I. & Gottesman, M.M. Multidrug resistance. Ann. Rev. Med. 42, 277–286 (1991).

    Article  CAS  Google Scholar 

  3. Meuth, M. The molecular basis of mutations induced by deoxyribonucleotide triphosphate pool imbalances in mammalian cells. Exp. Cell. Res. 181, 305–316 (1989).

    Article  CAS  Google Scholar 

  4. McPartland, R.P. & Weinfeld, H. Cooperative effects of CTP on calf liver CTP synthetase. J. biol. Chem. 254, 11394–11398 (1979).

    CAS  PubMed  Google Scholar 

  5. Meuth, M., L'Heureux-Huard, N. & Trudel, M. Characterization of a mutator gene in Chinese hamster ovary cells. Proc. natn. Acad. Sci. U.S.A. 76, 6505–6509 (1979).

    Article  CAS  Google Scholar 

  6. Meuth, M., Goncalves, O. & Trudel, M. The genetic consequences of the Thy-mutation to CHO cells. in Genetic Consequences of Nucleotide Pool Imbalance (ed de Serres, F.J.) 297–312 (Plenum Press, New York, 1985).

    Chapter  Google Scholar 

  7. Robert de Saint Vincent, B. & Buttin, G. Studieson 1-β-D-arabinosylcytosine-resistant mutants of Chinese hamster fibroblasts IV: altered regulation of CTP synthetase generates arabinosylcytosine and thymidine resistance. Biochim. Biophys. Acta 610, 352–359 (1980).

    Article  Google Scholar 

  8. Meuth, M., Trudel, M. & Siminovitch, L. Selection of Chinese hamster cells auxotrophic for thymidine by 1 -β-D-arabinosyl cytosine. Somat. Cell Genet. 5, 303–318 (1979).

    Article  CAS  Google Scholar 

  9. Meuth, M., Goncalves, O. & Thorn, P. A selection system specific for the thy mutator phenotype. Somat. Cell Genet. 8, 423–432 (1982).

    Article  CAS  Google Scholar 

  10. Aronow, B., Watts, T., Lassetter, J., Washtien, W. & Ullman, B. Biochemical phenotype of 5-fluorouracil-resistant murine T-lymphoblasts with genetically altered CTP synthetase activity. J. biol. Chem. 259, 9035–9043 (1984).

    CAS  PubMed  Google Scholar 

  11. Kaufman, E.R. Altered CTP synthetase activity confers resistance to 5-bromodeoxyuridine toxicity and mutagenesis. Mut. Res. 161, 19–27 (1986).

    Article  CAS  Google Scholar 

  12. Meuth, M. Role of deoxynucleoside triphosphate pools in the cytotoxic and mutagenic effects of DNA alkylating agents. Somat. Cell Genet. 7, 89–102 (1981).

    Article  CAS  Google Scholar 

  13. Chu E, H.Y., McLaren, J.D., Li, I.-C. & Lamb, B. Pleiotropic mutants of Chinese hamster cells with altered cytidine 5′-triphosphate synthetase. Biochem. Genet. 22, 701–715 (1984).

    Article  Google Scholar 

  14. Momparler, R.L. & Onetto-Pothier, N. Drug resistance to cytosine arabinoside. in Resistance to antineoplastic drugs (ed. Kessel, D.) 354–367 (CRC Press, Boca Raton, Florida, 1989).

    Google Scholar 

  15. Yamauchi, M., Yamauchi, N. & Meuth, M. Molecular cloning of the human CTP synthetase gene by functional complementation with purified human metaphase chromosomes. EMBO J. 9, 2095–2099 (1990).

    Article  CAS  Google Scholar 

  16. Trudel, M., Van Genechten, T. & Meuth, M. Biochemical characterization of the hamster Thy mutator gene and its revertants. J. biol. Chem. 259, 2355–2359 (1984).

    CAS  PubMed  Google Scholar 

  17. Kelsall, A. & Meuth, M. Direct selection of Chinese hamster ovary cells deficient in CTP synthetase activity. Somat. Cell molec. Genet. 14, 149–154 (1988).

    Article  CAS  Google Scholar 

  18. Weng, M., Makaroff, C.A. & Zalkin, H. Nucleotide sequence of Eschericia coli pyrG encoding CTP synthetase. J. biol. Chem. 261, 5568–5574 (1986).

    CAS  PubMed  Google Scholar 

  19. Ozier-Kalogeropoulos, O., Fasiolo, F., Adeline, M.-T., Collin, J. & Lecroute, F. Cloning sequencing and characterization of the Saccharomyces cerevisiae URA7 gene encoding CTP synthetase. Molec. gen. Genet. 231, 7–16 (1991).

    Article  CAS  Google Scholar 

  20. Drobetsky, E.A., Grosovsky, A.J. & Glickman, B.W. The specificity of UV-induced mutations at an endogenous locus in mammalian cells. Proc. natn. Acad. Sci. U.S.A. 84, 9103–9107 (1987).

    Article  CAS  Google Scholar 

  21. Yamauchi, M. et al. Genomic organization and chromosomal localization of the human CTP synthetase gene (CTPS). Genomics 11, 1088–1096 (1991).

    Article  CAS  Google Scholar 

  22. Kang, G.J. et al. Cyclopentenylcytosine triphosphate formation and inhibition of CTP synthetase. J. biol. Chem. 264, 713–718 (1989).

    CAS  PubMed  Google Scholar 

  23. Phear, G., Armstrong, W. & Meuth, M. The molecular basis of spontaneous mutation at the aprt locus of hamster cells. J. molec. Biol. 209, 577–582 (1989).

    Article  CAS  Google Scholar 

  24. Zhang, L.H., Vrieling, H., van-Zeeland, A.A. & Jenssen, D. Spectrum of spontaneously occurring mutations in the hprt gene of V79 Chinese hamster cells. J. molec. Biol. 223, 627–635 (1992).

    Article  CAS  Google Scholar 

  25. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C.C. p53 mutations in human cancers. Science 253, 49–53 (1991).

    Article  CAS  Google Scholar 

  26. Levine, A.J., Momand, J. & Finlay, C.A. The p53 tumour suppressor gene. Nature 351, 453–456 (1991).

    Article  CAS  Google Scholar 

  27. Lane, D.P. & Benchimol, S. p53: oncogene or anti-oncogene?. Genes Dev. 4, 1–8 (1990).

    Article  CAS  Google Scholar 

  28. Adair, G.M., Nairn, R.S., Brotherman, K.S. & Siciliano, M.J. Spontaneous CHO APRTheterozygotes reflect high frequency, allele-specific deletion of the chromosome Z4 APRT gene. Somat. Cell molec. Genet. 15, 535–544 (1989).

    Article  CAS  Google Scholar 

  29. Bradley, W.E.C. & Letovanec, D. High-frequency nonrandom mutational event at the adenine phosphoribosyltransferase (aprt) locus of sib-selected CHO variants heterozygous for aprt. Somat. Cell Genet. 8, 51–66 (1982).

    Article  CAS  Google Scholar 

  30. Dewyse, P. & Bradley, W.E.C. High-frequency deletion event at aprt locus of CHO cells: Detection and characterization of endpoints. Somat. Cell molec. Genet. 15, 19–28 (1989).

    Article  CAS  Google Scholar 

  31. Frohman, M.A., Dush, M.K. & Martin, G.R. Rapid production of full-length cDNAs from rare transcripts: amplification using single gene-specific oligonucleotide primer. Proc. natn. Acad. Sci. U.S.A. 85, 8998–9002 (1988).

    Article  CAS  Google Scholar 

  32. Orita, M., Suzuki, Y., Sekiya, T. & Hayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the poiymerase chain reaction. Genomics 5, 874–879 (1989).

    Article  CAS  Google Scholar 

  33. Trach, K., Chapman, J.W., Piggot, P., Lecoq, D. & Hoch, J.A. Complete sequence and transcriptional analysis of the spoOF region of the Bacillus subtilis chromosome. J. Bacteriol. 170, 4194–4208 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whelan, J., Phear, G., Yamauchi, M. et al. Clustered base substitutions in CTP synthetase conferring drug resistance in Chinese hamster ovary cells. Nat Genet 3, 317–322 (1993). https://doi.org/10.1038/ng0493-317

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0493-317

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing