Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human CCAAT displacement protein is homologous to the Drosophila homeoprotein, cut

Abstract

Human CCAAT displacement protein (CDP), a putative repressor of developmentally regulated gene expression, was purified from HeLa cells by DNA binding-site affinity chromatography. cDNA encoding CDP was obtained by immunoscreening a λgt11 library with antibody raised against purified protein. The deduced primary amino acid sequence of CDP reveals remarkable homology to Drosophila cut with respect to the presence of a unique homeodomain and “cut repeats”. As cut participates in determination of cell fate in several tissues in Drosophila, the similarity predicts a broad role for CDP in mammalian development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Royer-Pokora, B. et al. Nature. 322, 32–38 (1986).

    Article  CAS  Google Scholar 

  2. Skalnik, D.G., Strauss, E.C. & Orkin, S.H. J. biol. Chem. 266, 16736–16744 (1991).

    CAS  PubMed  Google Scholar 

  3. Barberis, A., Superti-Furga, G. & Busslinger, M. Cell 50, 347–359 (1987).

    Article  CAS  Google Scholar 

  4. Superti-Furga, G. et al. Biochim. Biophys. Acta. 1007, 237–242 (1989).

    Article  CAS  Google Scholar 

  5. Blochlinger, K. et al. Nature. 333, 629–635 (1988).

    Article  CAS  Google Scholar 

  6. McGinnis, W. & Krumlauf, R. Cell 68, 283–302 (1992).

    Article  CAS  Google Scholar 

  7. Bodmer, R. et al. Cell 51, 293–307 (1987).

    Article  CAS  Google Scholar 

  8. Liu, S., McLeod, E. & Jack, J. Genetics 127, 151–159 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Laemmli, U.K. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  10. Ginsburg, D. et al. Science 228, 1401–1406 (1985).

    Article  CAS  Google Scholar 

  11. Kozak, M. Cell 44, 283–292 (1986).

    Article  CAS  Google Scholar 

  12. Scott, M.P., Tamkun, J.W. & Hartzell, G.W.I.I.I. Biochim. biophys. Acta. 989, 25–48 (1989).

    CAS  PubMed  Google Scholar 

  13. Treisman, J. et al. Cell 59, 553–562 (1989).

    Article  CAS  Google Scholar 

  14. Hanes, S.D. & Brent, R. Cell 57, 1275–1283 (1989).

    Article  CAS  Google Scholar 

  15. Otting, G. et al. EMBO J. 9, 3085–3092 (1990).

    Article  CAS  Google Scholar 

  16. Laughon, A. Biochemistry 30, 11357–11366 (1991).

    Article  CAS  Google Scholar 

  17. Sweet, R.W., Chao, M.V. & Axel, R. Cell 31, 347–353 (1982).

    Article  CAS  Google Scholar 

  18. Rosenfeld, M.G., Dev. 5, 897–907 (1991).

    CAS  Google Scholar 

  19. Frigerio, G. et al. Cell 47, 735–746 (1986).

    Article  CAS  Google Scholar 

  20. Fortini, M.E., Lai, Z.C. & Rubin, G.M. Mech. Dev. 34, 113–122 (1991).

    Article  CAS  Google Scholar 

  21. Karisson, O. et al. Nature. 344, 879–882 (1990).

    Article  Google Scholar 

  22. Jan, Y.N. & Jan, L.Y. Trends Neurosci. 13, 493–498 (1990).

    Article  CAS  Google Scholar 

  23. Jack, J.W. Cell 42, 869–876 (1985).

    Article  CAS  Google Scholar 

  24. Blochlinger, K., Jan, L.Y. & Jan, Y.N., Dev. 5, 1124–1135 (1991).

    CAS  Google Scholar 

  25. Levine, M. & Manley, J.L. Cell 59, 405–408 (1989).

    Article  CAS  Google Scholar 

  26. Lubbert, M., Herrmann, F. & Koeffler, H.P. Blood 77, 909–924 (1991).

    CAS  PubMed  Google Scholar 

  27. Skalnik, D.G. et al. Proc. natn. Acad. Sci. U.S.A. 88, 8505–8509 (1991).

    Article  CAS  Google Scholar 

  28. Selden, R.F., in Current Protocols in Molecular Biology (eds Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K.) 9.2.1–9.2.6 (Greene/Wiley, New York, NY, 1989).

    Google Scholar 

  29. Molecular cloning: a laboratory manual, 2nd ed. (Sambrook, J., Fritsch, E. F. & Maniatis,T.) (Cold Spring Harbor, Cold Spring Harbor, New York, 1989).

  30. Dignam, J.D., Lebovitz, R.M. & Roeder, R.G. Nucl. Acids Res. 11, 1475–1489 (1983).

    Article  CAS  Google Scholar 

  31. Kadonaga, J.T. & Tjian, R. Proc. natn. Acad. Sci. U.S.A. 83, 5889–5893 (1986).

    Article  CAS  Google Scholar 

  32. St. John, T.P., in Current protocols in molecular biology (eds Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K.) 6.7.1–6.7.6 (Greene/Wiley, New York, 1990).

    Google Scholar 

  33. Henikoff, S., Gene. 28, 351–359 (1984).

    Article  CAS  Google Scholar 

  34. Altschul, S.F. et al. J. molec. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  35. Devereux, J., Haeberli, P. & Smithies, O. Nucl. Acids Res. 12, 387–395 (1984).

    Article  CAS  Google Scholar 

  36. Bonthron, D.T. et al. Nature. 324, 270–273 (1986).

    Article  CAS  Google Scholar 

  37. Andrews, N.C. & Faller, D.V. Nucl. Acids Res. 19, 2499 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neufeld, E., Skalnik, D., Lievens, PJ. et al. Human CCAAT displacement protein is homologous to the Drosophila homeoprotein, cut. Nat Genet 1, 50–55 (1992). https://doi.org/10.1038/ng0492-50

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0492-50

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing