Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Heterogeneous mutation processes in human microsatellite DNA sequences

Abstract

Although microsatellite polymorphisms are one of the most commonly used tools in genetic analyses1,2,3, it remains to be understood how microsatellite DNA has evolved as a ubiquitous and highly abundant class of repetitive sequences in eukaryotic genomes4. On the basis of analyses of spontaneous human microsatellite mutations of germline origin, I show here that different mutation biases underlie the evolution of microsatellite repeats. The within-locus mutation rate increases with allele length, but is not affected by the size difference between an individual's two alleles (allele span). Within loci, long alleles tend to mutate to shorter lengths, thereby acting to prevent infinite growth. Expansions are more common than contractions among dinucleotide repeats, whereas no such trend is evident among tetranucleotide repeats. This observation is consistent with the longer repeat lengths and higher frequency of di- compared with tetranucleotide repeats. An excess of paternally transmitted mutations (male-to-female ratio of 4.9) supports a male-biased mutation rate in the human genome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The number of human germline microsatellite mutations in relation to standardized allele size.
Figure 2: Size and direction (magnitude) of human germline microsatellite mutations.
Figure 3: Number of repeat units in mutating human microsatellite alleles.
Figure 4: Size and direction (magnitude) of human germline microsatellite mutations in relation to standardized allele size.

Similar content being viewed by others

References

  1. Bowcock, A.M. et al. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368, 455–457 (1994).

    Article  CAS  Google Scholar 

  2. Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152–154 (1996).

    Article  CAS  Google Scholar 

  3. Ellegren, H., Lindgren, G., Primmer, C.R. & Møller, A.P. Fitness loss and germline mutations in barn swallows breeding in Chernobyl. Nature 389, 393–396 (1997).

    Article  Google Scholar 

  4. Hamada, H., Petrino, M.G. & Kakunaga, T. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc. Natl Acad. Sci. USA 79, 6465–6469 (1982).

    Article  CAS  Google Scholar 

  5. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge, 1983).

  6. Weber, J.L. & Wong, C. Mutation of human short tandem repeats. Hum. Mol. Genet. 2, 1123–1128 (1993).

    Article  CAS  Google Scholar 

  7. Brinkmann, B., Klintschar, M., Neuhuber, F., Hühne, J. & Rolf, B. Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am. J. Hum. Genet. 62, 1408–1415 (1998).

    Article  CAS  Google Scholar 

  8. Primmer, C.R., Ellegren, H., Saino, N. & Møller, A.P. Directional evolution in germline microsatellite mutations. Nature Genet. 13, 391–393 (1996).

    Article  CAS  Google Scholar 

  9. Farrall, M. & Weeks, D.E. Mutational mechanisms for generating microsatellite allele-frequency distributions: an analysis of 4,558 markers. Am. J. Hum. Genet. 62, 1260–1262 (1998).

    Article  CAS  Google Scholar 

  10. Weber, J.L. Informativeness of human (dC-dA)n·(dG-dT)n polymorphisms. Genomics 7, 524–530 (1990).

    Article  CAS  Google Scholar 

  11. Rubinsztein, D.C. et al. Microsatellite evolution-evidence for directionality and variation in rate between species. Nature Genet. 10, 337–343 (1995).

    Article  CAS  Google Scholar 

  12. Amos, W., Sawcer, S.J., Feakes, R.W. & Rubinsztein, D.C. Microsatellites show mutational bias and heterozygote instability. Nature Genet. 13, 390–391 (1996).

    Article  CAS  Google Scholar 

  13. Ellegren, H., Primmer, C.R. & Sheldon, B.C. Microsatellite evolution: directionality or bias? Nature Genet. 11, 360–362 (1995).

    Article  CAS  Google Scholar 

  14. Schlotterer, C. & Tautz, D. Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 20, 211–215 (1992).

    Article  CAS  Google Scholar 

  15. Chakraborty, R., Kimmel, M., Stivers, D.N., Davison, L.J. & Deka, R. Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proc. Natl Acad. Sci. USA 94, 1041–1046 (1997).

    Article  CAS  Google Scholar 

  16. Jones, A.G., Rosenqvist, G., Berglund, A. & Avise, J.C. Clustered microsatellite mutations in the pipefish Syngnathus typhle. Genetics 152, 1057–1063 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Primmer, C.R., Saino, N., Møller, A.P. & Ellegren, H. Unravelling the process of microsatellite evolution through analysis of germline mutations in barn swallows. Mol. Biol. Evol. 15, 1047–1054 (1998).

    Article  CAS  Google Scholar 

  18. Wierdl, M., Dominska, M. & Petes, T.D. Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics 146, 769–779 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hurst, L.D. & Ellegren, H. Sex biases in the mutation rate. Trends Genet. 14, 446–452 (1998).

    Article  CAS  Google Scholar 

  20. Miyata, T., Hayashida, H., Kuma, K., Mitsuyasa, K. & Yasunaga, T. Male-driven molecular evolution: a model and nucleotide sequence analysis. Cold Spring Harb. Symp. Quant. Biol. 52, 863–867 (1987).

    Article  CAS  Google Scholar 

  21. Shimmin, L.C., Chang, B.H.J. & Li, W.-H. Male-driven evolution of DNA sequences. Nature 362, 745–747 (1993).

    Article  CAS  Google Scholar 

  22. McVean, G.T. & Hurst, L.D. Evidence for a selectively favourable reduction in the mutation rate of the X-chromosome. Nature 386, 388–392 (1997).

    Article  CAS  Google Scholar 

  23. Crow, J.F. Molecular evolution—who is in the driver's seat? Nature Genet. 17, 129–130 (1997).

    Article  CAS  Google Scholar 

  24. Ellegren, H. & Fridolfsson, A.K. Male-driven evolution of DNA sequences in birds. Nature Genet. 17, 182–184 (1997).

    Article  CAS  Google Scholar 

  25. Vogel, F. & Motulsky, A.G. Human Genetics (Springer, Berlin, 1997).

  26. Crow, J.F. The high spontaneous mutation rate: is it a health risk? Proc. Natl Acad. Sci. USA 94, 8380–8386 (1997).

    Article  CAS  Google Scholar 

  27. Smith, N.G. & Hurst, L.D. The causes of synonymous rate variation in the rodent genome. Can substitution rates be used to estimate the sex bias in mutation rate? Genetics 152, 661–673 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. El-Maarri, O. et al. Methylation at selected CpG sites in the Factor VIII and FGFR3 genes, in mature female and male germ cells: implications for male-driven evolution. Am. J. Hum. Genet. 63, 1001–1008 (1998)

    Article  CAS  Google Scholar 

  29. Banchs, I. et al. New alleles at microsatellite loci in CEPH families mainly arise from somatic mutations in the lymphoblastoid cell lines. Hum. Mutat. 3, 365–372 (1994).

    Article  CAS  Google Scholar 

  30. Farber, R.A., Petes, T.D., Dominska, M., Hudgens, S. & Liskay, R.M. Instability of simple sequences in a mammalian cell line. Hum. Mol. Genet. 3, 253–256 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank B. Sheldon for discussions and comments on the manuscript, and P. Gunn, B. Rolf and P. Stapleton for data on microsatellite mutations. Financial support was obtained from the Swedish Research Councils for Agriculture and Forestry, for Natural Sciences and for Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Ellegren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellegren, H. Heterogeneous mutation processes in human microsatellite DNA sequences. Nat Genet 24, 400–402 (2000). https://doi.org/10.1038/74249

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74249

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing