Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Epistatic relationship between Waardenburg Syndrome genes MITF and PAX3

Abstract

Waardenburg syndrome (WS) is a hereditary disorder that causes hypopigmentation and hearing impairment. Depending on additional symptoms, WS is classified into four types1: WS1, WS2, WS3 and WS4. Mutations in MITF (mi crophthalmia-associated t ranscription f actor) and PAX3, encoding transcription factors, are responsible for WS2 and WS1/WS3, respectively1. We have previously shown that MITF transactivates the gene for tyrosinase, a key enzyme for melanogenesis, and is critically involved in melanocyte differentiation2. Absence of melanocytes affects pigmentation in the skin, hair and eyes, and hearing function in the cochlea3. Therefore, hypopigmentation and hearing loss in WS2 are likely to be the results of an anomaly of melanocyte differentiation caused by MITF mutations4,5. However, the molecular mechanism by which PAX3 mutations cause the auditory-pigmentary symptoms in WS1/WS3 remains to be explained. Here we show that PAX3, a transcription factor with a paired domain and a homeodomain, transactivates the MITF promoter. We further show that PAX3 proteins associated with WS1 in either the paired domain or the homeodomain fail to recognize and transactivate the MITF promoter. These results provide evidence that PAX3 directly regulates MITF, and suggest that the failure of this regulation due to PAX3 mutations causes the auditory-pigmentary symptoms in at least some individuals with WS1.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Read, A.P. & Newton, V.E. Waardenburg syndrome. J. Med. Genet. 34, 656–665 (1997).

    CAS  Article  Google Scholar 

  2. 2

    Tachibana, M. et al. Ectopic expression of MITF, a gene for Waardenburg syndrome type 2, converts fibroblasts to cells with melanocyte characteristics. Nature Genet. 14, 50–54 (1996).

    CAS  Article  Google Scholar 

  3. 3

    Tachibana, M. et al. Cochlear disorder associated with melanocyte anomaly in mice with a transgenic insertional mutation. Mol. Cell. Neurosci. 3, 433–445 (1992).

    CAS  Article  Google Scholar 

  4. 4

    Tassabehji, M., Newton, V.E. & Read, A.P. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nature Genet. 8, 251–255 (1994).

    CAS  Article  Google Scholar 

  5. 5

    Nobukuni, Y., Watanabe, A., Takeda, K., Skarka, H. & Tachibana, M. Analyses of loss-of-function mutations of the MITF gene suggest that haploinsufficiency is a cause of Waardenburg syndrome type 2A. Am. J. Hum. Genet. 59, 76–83 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Latchman, D.S. Transcription-factor mutations and disease. N. Engl. J. Med. 334, 28–33 (1996).

    CAS  Article  Google Scholar 

  7. 7

    Semenza, G.L. Transcriptional regulation of gene expression: mechanisms and pathophysiology. Hum. Mutat. 3, 180–199 (1994).

    CAS  Article  Google Scholar 

  8. 8

    Tassabehji, M. et al. Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 355, 635–636 (1992).

    CAS  Article  Google Scholar 

  9. 9

    Baldwin, C.T., Hoth, C.F., Amos, J.A., da-Silva, E.O. & Milunsky, A. An exonic mutation in the Hup2 paired domain gene causes Waardenburg's syndrome. Nature 355, 637–638 (1992).

    CAS  Article  Google Scholar 

  10. 10

    Hoth, C.F. et al. Mutations in the paired domain of the human PAX3 gene cause Klein-Waardenburg syndrome (WS-III) as well as Waardenburg syndrome type I (WS-I). Am. J. Hum. Genet. 52, 455–462 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Lalwani, A.K. et al. Further elucidation of the genomic structure of PAX3, and identification of two different point mutations within the PAX3 homeobox that cause Waardenburg syndrome type I in two families. Am. J. Hum. Genet. 56, 75–83 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Tassabehji, M. et al. The mutational spectrum in Waardenburg syndrome. Hum. Mol. Genet. 4, 2131–2137 (1995).

    CAS  Article  Google Scholar 

  13. 13

    Chalepakis, G., Goulding, M., Read, A., Strachan, T. & Gruss, P. Molecular basis of splotch and Waardenburg syndrome Pax-3 mutations. Proc. Natl. Acad. Sci. USA 91, 3685–3689 (1994).

    CAS  Article  Google Scholar 

  14. 14

    Epstein, J.A., Shapiro, D.N., Chen, J., Lam, P.Y.P. & Maas, R.L. Pax3 modulates expression of the c-Met receptor during limb muscle development. Proc. Natl. Acad. Sci. USA 93, 4213–4218 (1996).

    CAS  Article  Google Scholar 

  15. 15

    Opdecamp, K. et al. Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor. Development 124, 2377–2386 (1997).

    CAS  Google Scholar 

  16. 16

    Fuse, N., Yasumoto, K., Suzuki, H., Takahashi, K. & Shibahara, S. Identification of a melanocyte-type promoter of the microphthalmia-associated transcription factor gene. Biochem. Biophys. Res. Comm. 219, 702–707 (1996).

    CAS  Article  Google Scholar 

  17. 17

    Chalepakis, G., Wijnholds, J. & Gruss, P. Pax-3-DNA interaction: flexibility in the DNA binding and induction of DNA conformational changes by paired domains. Nucleic Acids Res. 22, 3131–3137 (1994).

    CAS  Article  Google Scholar 

  18. 18

    Guazzi, S. et al. The thyroid transcription factor-1 gene is a candidate target for regulation by Hox proteins. EMBO J. 13, 3339–3347 (1994).

    CAS  Article  Google Scholar 

  19. 19

    Macina, R.A., Barr, F.G., Galili, N. & Riethman, H.C. Genomic organization of the human PAX3 gene: DNA sequence analysis of the region disrupted in alveolar rhabdomyosarcoma. Genomics 26, 1–8 (1995).

    CAS  Article  Google Scholar 

  20. 20

    Schreiber, E., Matthias, P., Müller, M.M. & Schaffner, W. Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucleic Acids Res. 17, 6419 (1989).

    CAS  Article  Google Scholar 

  21. 21

    Fredericks,W.J. et al. The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Mol. Cell. Biol. 15, 1522–1535 (1995).

    CAS  Article  Google Scholar 

  22. 22

    Jones, D.H. & Howard, B.H. A rapid method for the site-specific mutagenesis and directional subcloning by using the polymerase chain reaction to generate recombinant circles. BioTechniques 8, 178–183 (1990).

    CAS  PubMed  Google Scholar 

  23. 23

    Kamachi, Y. & Kondoh, H. Overlapping positive and negative regulatory elements determine lens-specific activity of the δ1-crystallin enhancer. Mol. Cell. Biol. 13, 5206–5215 (1993).

    CAS  Article  Google Scholar 

  24. 24

    Miki, T. et al. Development of a highly efficient expression cDNA cloning system: application to oncogene isolation. Proc. Natl. Acad. Sci. USA 88, 5167–5171 (1991).

    CAS  Article  Google Scholar 

  25. 25

    Sublett, J.E., Jeon, I.-S. & Shapiro, D.N. The alveolar rhabdomyosarcoma PAX3/FKHR fusion protein is a transcriptional activator. Oncogene 11, 545–552 (1995).

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Tachibana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Watanabe, A., Takeda, K., Ploplis, B. et al. Epistatic relationship between Waardenburg Syndrome genes MITF and PAX3. Nat Genet 18, 283–286 (1998). https://doi.org/10.1038/ng0398-283

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing