Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recent origin of HLA-DRB1 alleles and implications for human evolution

Abstract

The HLA class I and class II loci are the most highly polymorphic coding regions in the human genome. Based on the similarity of the coding sequences of alleles between species, it has been claimed that the HLA polymorphism is ancient and predates the separation of human (Homo) and chimpanzee (Pan), 4–7.4 Myr ago. Analysis of intron sequences, however, provides support for a more recent origin and for rapid generation of alleles at the HLA class II DRB1 locus. The human DRB1 alleles can be divided into groups (allelic lineages); most of these lineages have diverged from each other before the separation of Homo and Pan. Alleles within such a lineage, however, appear to be, on average, 250,000 years old, implying that the vast majority (greater than 90%) of the more than 135 contemporary human DRB1 alleles have been generated after the separation of Homo and Pan. The coalescence time of alleles within allelic lineages indicates that the effective population size (Ne) for early hominids (over the last 1 Myr) was approximately 104 individuals, similar to estimates based on other nuclear loci and mitochondrial DMA. With a single exception, the genetic mechanisms (gene conversion and point mutation) that have diversified the exon-2 sequences do not appear to extend into the adjacent intron sequences. The part of exon 2 encoding the (β-sheet evolves in concert with the surrounding introns, while the α-helix appears to have been subjected to gene conversion-like events, suggesting that such exchange events are highly localised and occur over extremely short sequence tracts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kappes, D. & Strominger, J.L. Human class II major histocompatibility complex genes and proteins. Ann. Rev. Biochem. 57, 991–1028 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Trowsdale, J. “Both man & bird & beast”: comparative organization of MHC genes. Immunogenetics 41, 1–17 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Arden, B. & Klein, J. Biochemical comparison of major histocompatibility complex molecules from different subspecies of mus musculus: Evidence for trans-specific evolution of alleles. Proc. Natl. Acad. Sci. USA 79, 2342–2346 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Klein, J. Origin of major histocompatibility complex polymorphism: the trans-species hypothesis. Hum. Immunol. 19, 155–162 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Figueroa, F ., Günther, E. & Klein, J. MHC polymorphism pre-dating speciation. Nature 335, 265–267 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Satta, Y., Takahata, N., Sochönabach, C., Gutknecht, J. & Klein, J. in Molecular Evolution of the Major Histocompatibility Complex (eds Klein, J. & Klein, D.) 51–62 (Springer Verlag, Berlin-Heidelberg, 1991).

    Chapter  Google Scholar 

  7. Ayala, F.J., Escalante, A., O'hUigin, C. & Klein, J. Molecular genetics of speciation and human origins. Proc. Natl. Acad. Sci. USA 91, 6787–6794 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ayala, F.J. The myth of Eve: molecular biology and human origins. Science 270, 1930–1936 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Ayala, F.J. & Escalante, A.A. The evolution of human populations: A molecular perspective. Mol. Phyl. Evol. 5, 188–201 (1996).

    Article  CAS  Google Scholar 

  10. Gyllensten, U.B., Sundvall, M. & Erlich, H.A. Allelic diversity is generated by intraexon sequence exchange at the DRB1 locus of primates. Proc. Natl. Acad. Sci. USA 88, 3686–3690 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gyllensten, U., Bergström, T., Josefsson, A., Sundvall, M. & Erlich, H.A. Rapid allelic diversification and intensified selection at antigen recognition sites of the MHC class II DPB1 locus during hominoid evolution. Tissue Antigens 47, 212–221 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Titus-Trachtenberg, E.A., Rickards, O., De Stefano, G.F. & Erlich, H.A. Analysis of HLA class II haplotypes in the Cayapa Indians of Ecuador: a novel DRB1 allele reveals evidence for convergent evolution and balancing selection at position 86. Am. J. Hum. Genet. 55, 160–167 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mack, S.J. & Erlich, H.A. HLA class II polymorphism in the Ticuna of Brazil: Evolutionary implications of the DRB1*0807 allele.Tissue Antigens 51, 41–50 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Hughes, A.L. & Nei, M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335,167–170 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Hughes, A.L. & Nei, M. Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc. Natl. Acad. Sci. USA 86, 958–962 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Begovich, A.B. . et al. Polymorphism, recombination, and linkage disequilibrium within the HLA class II region. J. Immunol. 148, 249–258 (1992).

    CAS  PubMed  Google Scholar 

  17. Gorski, J. & Mach, B. Polymorphism of human la antigens: gene conversion between two DRB loci results in a HLA-D/DR specificity. Nature 322, 67–70 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Marsh, S.G. & Bodmer, J.G. HLA class II region nucleotide sequences, 1995. Tissue Antigens 46, 258–280 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Sneath, P.H.A. & Sokal, R.R. Numerical Taxonomy (freeman, San Francisco, 1973).

  20. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

  21. Jukes, T.H. & Cantor, C.R. . in Mammalian Protein Metabolism (ed. Munro, H.N.) 21–32 (Academic Press, New York, 1969).

    Book  Google Scholar 

  22. Svensson, A.C., Setterblad, N., Sigurdardo′ttir, S., Rask, L . & Andersson, G . Primate DRB genes from the DR3 and DR8 haplotypes contain ERV9 LTR elements at identical position. Immunogenetics 41, 74–82 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Svensson, A.C., Setterblad, N., Pihlgren, U., Rask, L. & Andersson, G. Evolutionary relationship between human major histocompatibility complex HLA-DR haplotypes. Immunogenetics 43, 304–314 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Li, W.H., Ellsworth, D.L., Krushkall, J., Chang, B.H.J. & Emmett, D.H. Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. Mol. Phyl. Evol. 5, 182–187 (1996).

    Article  CAS  Google Scholar 

  25. Satta, Y., Mayer, W.E. & Klein, J. Evolutionary relationship of HLA-DRB1 genes inferred from intron sequences. J. Mol. Evol. 42, 648–657 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Holmes, E.C., Pesole, G. & Saccone, C. Stochastic models of molecular evolution and the estimation of phylogeny and rates of nucleotide substitution in the hominoid primates. J. Hum. Evol. 18, 774–794 (1989).

    Article  Google Scholar 

  27. Horai, S. . et al. Man's place in Hominoidea revealed by mitochondrial DNA genealogy. J. Mol. Evol. 35, 32–43 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Horai, S., Hayasaka, K., Kondo, R., Tsugane, K. & Takahata, N., African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc. Natl. Acad. Sci. USA 92, 532–536 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McConnell, T.J., Talbot, W.S., Mclndoe, R.A. & Wakeland, E.K. The origin of MHC class II gene polymorphism within the genus Mus. Nature 332, 651–654 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Nathenson, S.G., Geliebter, J., Pfaffenbach, G.M. & Zeff, R.A. Murine major histocompatibility complex class-l mutants: Molecular analysis and structure-function implication. Ann. Rev. Immunol. 4, 471–502 (1986).

    Article  CAS  Google Scholar 

  31. Wu, S., Saunders, T. & Bach, F. Polymorphism of human la antigens generated by reciprocal exchange between two DRβ loci. Nature 324, 676–679 (1986).

    Article  CAS  PubMed  Google Scholar 

  32. Ripley, L.S. . in Molecular Evolution of the Major Histocompatibility Complex (eds Klein, J. & Klein, D.) 63–94 (Springer-Verlag, Berlin-Heidelberg, 1991).

  33. Ohta, T. Gene conversion vs point mutation in generating variability at the antigen recognition site of major histocompatibility complex loci. J. Mol. Evol. 41,115–119 (1995).

    CAS  PubMed  Google Scholar 

  34. Mayer, W.E. . et al. Nucleotide sequences of chimpanzee MHC class I alleles: evidence for trans-species mode of evolution. EMBO J. 7, 2765–2774 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maynard Smith, J. & Haigh, J. The hitchhiking effect of a favourable gene. Genetical Res. 23, 23–35 (1974).

    Article  Google Scholar 

  36. Kaplan, N.L., Hudson, R.R. & Langley, C.H. The hitchhiking effect revisited. Genetics 123, 887–899 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Charlesworth, B., Morgan, M.T. & Charlesworth, D. The effect of deleterious mutations on neutral molecular variation. Genetics 134, 1289–1303 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Strobeck, C. Expected linkage disequilibrium for a neutral locus linked to a chromosomal arrangement. Genetics 103, 545–555 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaplan, N.L., Darden, T. & Hudson, R.R. The coalescence process in models with selection. Genetics 120, 819–829 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hudson, R.R. & Kaplan, N.L. The coalescence process in models with selection and recombination. Genetics 120, 831–840 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tajima, F. Statistical methods for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Takahata, N. Allelic genealogy and human evolution. Mol. Biol. Evol. 10, 2–22 (1993).

    CAS  PubMed  Google Scholar 

  43. Takahata, N. & Satta, Y. Footprints of intragenic recombination on silent nucleotide diversity at HLA loci. Immunogenetics (in press).

  44. Takahata, N. & Satta, Y. Evolution of the primate lineage leading to modern humans: Phylogenetic and demographic inferences from DNA sequences. Proc. Natl. Acad. Sci. USA 94, 4811–4815 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Harding, R.M. et al. Archaic african and asian lineages in the genetic ancestry of modern humans. Am. J. Hum. Genet. 60, 772–789 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cann, R.L., Stoneking, M. & Wilson, A.C. Mitochondrial DNA and human evolution. Nature 325, 31–36 (1987).

    Article  CAS  PubMed  Google Scholar 

  47. Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K. & Wilson, A.C. African populations and the evolution of mitochondrial DNA. Science 253, 1503–1507 (1991).

    Article  CAS  PubMed  Google Scholar 

  48. Li, W.-H. & Saddler, L.A. Low nucleotide diversity in man. Genetics 129, 513–523 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Fullerton, N., Harding, R.M., Boyce, A.J. & Clegg, J.B. Molecular and population genetic analysis of allelic sequence diversity at human β-globin locus. Proc. Natl. Acad. Sci. USA 91, 1805–1809 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hammer, M.F. A recent common ancestry for human Y chromosomes. Nature 378, 376–378 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Kumar, S., Tamura, K. & Nei, M. MEGA: Molecular evolutionary genetics analysis, version 1.0.Comput. Appl. Biosci. 10, 189–191 (1994).

    CAS  PubMed  Google Scholar 

  52. Nei, M. & Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3, 418–426 (1986).

    CAS  PubMed  Google Scholar 

  53. Hickson, R.E. & Cann, R.L. Mhc allelic diversity and modern human origins. J. Mol. Evol. 45, 589–598 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergström, T., Josefsson, A., Erlich, H. et al. Recent origin of HLA-DRB1 alleles and implications for human evolution. Nat Genet 18, 237–242 (1998). https://doi.org/10.1038/ng0398-237

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0398-237

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing