Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Linkage-disequilibrium mapping without genotyping

Abstract

Genomic mismatch scanning (GMS) is a technique that enriches for regions of identity by descent (IBD) between two individuals without the need for genotyping or sequencing. Regions of IBD selected by GMS are mapped by hybridization to a microarray containing ordered clones of genomic DNA from chromosomes of interest. Here we demonstrate the feasibility and efficacy of this form of linkage-mapping, using congenital hyperinsulinism (HI), an autosomal recessive disease, whose relatively high frequency in Ashkenazi Jews suggests a founder effect. The gene responsible (SUR1) encodes the sulfonylurea receptor, which maps to chromosome 11p15.1. We show that the combination of GMS and hybridization of IBD products to a chromosome-11 microarray correctly maps the HI gene to a 2-Mb region, thereby demonstrating linkage-disequilibrium mapping without genotyping.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ewens, W.J., Spielman, R.S. & Harris, H. Estimation of genetic variation at the DNA level from restriction endonuclease data. Proc. Natl. Acad. Sci. USA 6, 3748–3750 (1981).

    Article  Google Scholar 

  2. Cooper, D.N., Smith, B.A., Cooke, H.J., Niemann, S. & Schmidte, J. An estimate of unique DNA sequence heterozygosity in the human genome. Hum. Genet. 69, 201–205 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Nelson, S.F. et al. Genomic mismatch scanning : a new approach to genetic linkage mapping. Nature Genet. 4, 11–18 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Mirzayans, F., Mear, A.J., Guo, S.-W., Pearce, W.G. & Walter, M.A. Identification of the human chromosomal region contain the iridogoniodysgenesis anomaly locus by genomic mismatch scanning. Am. J. Hum. Genet. 61, 111–119 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cheung, V.G. & Nelson, S.F. Genomic mismatch scanning identifies human genomic DNA shared identical by descent. Genomics 47, 1–7 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. McAllister, L., Penland, L. & Brown, P.O. Enrichment for loci identical-by-descent between pairs of mouse or human genomes by genomic mismatch scanning. Genomics 47, 8–14 (1998).

    Article  Google Scholar 

  7. Aguilar-Bryan, L. et al. Cloning of the β-cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268, 423–425 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Thomas, P.M. et al. Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science 268, 426–428 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Nestorowicz, A. et al. Mutations in the sulfonylurea receptor gene are associated with familial hyperinsulinism in Ashkenazi Jews. Hum. Mol. Genet. 5, 1813–1822 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Au, K.G., Welsh, K. & Modrich, P. Initiation of methyl-directed mismatch repair. J. Biol. Chem. 267, 12142–12148 (1992).

    CAS  PubMed  Google Scholar 

  11. Casna, N., Novack, D., Hsu, M. & Ford, D. Genomic analysis II: isolation of high molecular weight heteroduplex DNA following differential methylase protection and formamide-PERT hybridization. Nucleic Acids Res. 14, 7285–7303 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Modrich, P. DNA mismatch correction. Ann. Rev. Biochem. 56, 435–466 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Su, S.S., Lanhue, R.S., Au, K.G. & Modrich, P. Mispair specificity of methyl-directed DNA mismatch correction in vitro. J. Biol. Chem. 263, 6829–6835 (1988).

    CAS  PubMed  Google Scholar 

  14. Smitha, J & Modrich, P. Mutation detection of MutH, MutL, and MutS mismatch repair proteins. Proc. Natl. Acad. Sci. USA 93, 4374–4379 (1996).

    Article  Google Scholar 

  15. Jorde, L.B. Linkage disequilibrium as a gene-mapping tool. Am. J. Hum. Genet. 56, 11–14 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Glaser, B. et al. Recombinant mapping of the familial hyperinsulinism gene to an 0.8 cM region on chromosome 11p15.1 and demonstration of a founder effect in Ashkenazi Jews. Hum. Mol. Genet. 4, 879–886 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Qin, S. et al. A Chromosome 11 YAC library. Genomics 16, 580–585 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Qin, S. et al. A high-resolution physical map of human chromosome 11. Proc. Natl. Acad. Sci. USA 93, 3149–3154 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stanley, C.A. & Baker, L. Hyperinsulinism in infants and children: Diagnosis and therapy. Advances Pediatr. 23, 315–355 (1976).

    CAS  Google Scholar 

  21. Glaser, B. et al. Familial hyperinsulinism maps to chromosome 11p14–15.1, 30 cM centromeric to the insulin gene. Nature Genet. 7, 185–188 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Ayyagari, A. et al. Construction of a YAC contig encompassing the Usher Syndrome Type 1C and familial hyperinsulinism loci on chromosome 11p14 –15.1. Genome Res. 6, 504–514 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Kerem, B.S. et al. Identification of the cystic fibrosis gene: Genetic analysis. Science 245, 1073–1080 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Risch, N. et al. Genetic analysis of idiopathic torsion dystonia in Ashkenazi Jews and their descent from a small founder population. Nature Genet. 9, 152–159 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Hästbacka, J. et al. Linkage disequilibrium mapping in isolated founder populations: diastrophic dysplasia in Finland. Nature Genet. 2, 204–211 (1992).

    Article  PubMed  Google Scholar 

  26. Sedat, J.W., Kelly, R.B. & Sinsheimer, R.L. Fractionation of nucleic acid on benzoylated-naphthoylated DEAE cellulose. J. Mol. Biol. 26, 537–540 (1967).

    Article  CAS  PubMed  Google Scholar 

  27. Henikoff, S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28, 351–360 (1984).

    Article  CAS  PubMed  Google Scholar 

  28. Lengauer, C., Green, E.D & Cremer, T. Fluorescence in situ hybridization of YAC clones after Alu-PCR amplification. Genomics 13, 826–828 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Shalon, D., Smith, S.J. & Brown, P.O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization.Genome Res. 6, 639–645 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, V., Gregg, J., Gogolin-Ewens, K. et al. Linkage-disequilibrium mapping without genotyping. Nat Genet 18, 225–230 (1998). https://doi.org/10.1038/ng0398-225

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0398-225

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing