Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chromosomal deletion complexes in mice by radiation of embryonic stem cells

Abstract

Chromosomal deletions (‘deficiencies’) are powerful tools in the genetic analysis of complex genomes. They have been exploited extensively in Drosophila melanogaster, an organism in which deficiencies can be efficiently induced and selected1. Spontaneous deletions in humans have facilitated the dissection of phenotypes in contiguous gene syndromes2,3 and led to the positional cloning of critical genes4,5. In mice, deletion complexes created by whole animal irradiation experiments have enabled a systematic characterization of functional units along defined chromosomal regions6,7. However, classical mutagenesis in mice is logistically impractical for generating deletion sets on a genome-wide scale. Here, we report a high-throughput method for generating radiation-induced deletion complexes at defined regions in the genome using ES cells. Dozens of deletions of up to several centiMorgans, encompassing a specific locus, can be created in a single experiment and transmitted through the germline. The ability to rapidly create deletion complexes along chromosomes will facilitate systematic functional analyses of the mammalian genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ashburner, M. Drosophila A Laboratory Manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

  2. Schmickel, R.D. Contiguous gene syndromes: a component of recognizable syndromes. J. Pediatr. 109, 231–241 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Overhauser, J. et al. Molecular and phenotypic mapping of the short arm of chromosome 5: sublocalization of the critical region for the cri-du-chat syndrome. Hum. Mol. Genet. 3, 247–252 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Sinclair, A.H. et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DMA-binding motif. Nature 346, 240–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Page, D.C. et al. The sex-determining region of the human Y chromosome encodes a finger protein. Cell 51, 1091–1104 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Russell, L. Montgomery, C . & Raymer, G. Analysis of the albino-locus region of the mouse: IV. Characterization of 34 deficiencies. Genetics 100, 427–453 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Holdener-Kenny, B. Sharan, S.K. & Magnuson, T. Mouse albino-deletions: from genetics to genes in development. Bioessays 14, 831–839 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Urlaub, G. et al. Effect of gamma rays at the dihydrofolate reductase locus: deletions and inversions. Som. Cell. Mol. Genet. 12, 555–566 (1986).

    Article  CAS  Google Scholar 

  9. Kavathas, P. Bach, F. & DeMars, R. Gamma ray-induced loss of expression of HLA and glyoxalase I alleles in lymphoblastoid cells. Proc. Natl. Acad. Sci. USA 77, 4251–4255 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. teRiele, H. Maandag, E. & Berns, A. Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. Natl. Acad. Sci. USA 89, 5128–5132 (1992).

    Article  CAS  Google Scholar 

  11. Hamvas, R. et al. Mouse Chromosome 17. Mamm. Genome 6, S281–S299 (1996).

    CAS  PubMed  Google Scholar 

  12. Johnson, D.R. Hairpin-Tail: a case of post-reductionaI gene action in the mouse egg? Genetics 76, 795–805 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Askew, G. Doetschman, T. & Lingrel, J. Site-directed point mutations in embryonic stem cells: a gene-targeting tag-and-exchange strategy. Mol. Cell. Biol. 13, 4115–4124 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ramirez Solis, R. Liu, P. & Bradley, A. Chromosome engineering in mice. Nature 378, 720–724 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Holdener, B.C. et al. Physical localization of eed: a region of mouse chromosome 7 required for gastrulation. Genomics 27, 447–456 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Rinchik, E.M. Carpenter, D.A. & Long, C.L. Deletion mapping of four loci defined by N-ethyl-N-nitrosourea-induced postimplantation-lethal mutations within the pid-Hbb region of mouse chromosome 7. Genetics 135, 1117–1123 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rinchik, E.M. & Carpenter, D.A. N-ethyl-N-nitrosourea-induced prenatally lethal mutations define at least two complementation groups within the embryonic ectoderm development (eecO locus in mouse chromosome 7. Mamm. Genome 4, 349–353 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Swiatek, P.J. & Gridley, T. Perinatal lethality and defects in hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox20. Genes Dev. 7, 2071–2084 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Dietrich, W. et al. A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nature Genet. 7, 220–245 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Dietrich, W.F. et al. A comprehensive genetic map of the mouse genome. Nature 380, 149–152 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Gregorova, S. et al. Sub-milliMorgan map of the proximal part of mouse Chromosome 17 including the hybrid sterility 1 gene. Mamm. Genome 7, 107–113 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Hammer, M.H. Schimenti, J.C. & On the origins of t complex inversions. Proc. Natl. Acad. Sci. USA 86, 3261–3265 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sharan, S.K. et al. The albino-deletion complex of the mouse: molecular mapping of deletion breakpoints that define regions necessary for development of the embryonic and extraembryonic ectoderm. Genetics 129, 825–832 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bell, J.A. Rinchik, E.M. Raymond, S. Suffolk, R. & Jackson, I.J. A high-resolution map of the brown (b, Tyrp1) deletion complex of mouse chromosome 4. Mamm. Genome 6, 389–395 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, Y., Bergstrom, R., Klemm, M. et al. Chromosomal deletion complexes in mice by radiation of embryonic stem cells. Nat Genet 15, 285–288 (1997). https://doi.org/10.1038/ng0397-285

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0397-285

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing