Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Keratin 16 and keratin 17 mutations cause pachyonychia congenita

Abstract

Pachyonychia congenita (PC) is a group of autosomal dominant disorders characterized by dystrophic nails and other ectodermal aberrations. A gene for Jackson–Lawler PC was recently mapped to the type I keratin cluster on 17q. Here, we show that a heterozygous missense mutation in the helix initiation motif of K17 (Asn92Asp) co–segregates with the disease in this kindred. We also show that Jadassohn–Lewandowsky PC is caused by a heterozygous missense mutation in the helix initiation peptide of K16 (Leu130Pro). The known expression patterns of these keratins in epidermal structures correlates with the specific abnormalities observed in each form of PC.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McKusick, V.A. OMIM (On-line Mendelian lnheritance ln Man);Johns Hopkins University, Baltimore (Johns Hopkins University, Baltimore, 1994).

    Google Scholar 

  2. Jadassohn, J. & Lewandowsky, F. in Jacobs ikonographia Dermatologica 1, 29 (Urban and Schwarzenberg, Berlin, 1906).

    Google Scholar 

  3. Jackson, A.D.M. & Lawler, S.D. Pachyonychia congenita: a report of six cases in one family. Ann. Eugen. 16, 142–146 (1951).

    Article  CAS  Google Scholar 

  4. Hatzfeld, M. & Weber, K. The coiled coil of in vitro assembled keratin filaments is a heterodimer of type I and II keratins: Use of site-specific mutagenesis and recombinant protein expression. J. Cell Biol. 110, 1199–1210 (1990).

    Article  CAS  Google Scholar 

  5. Steinert, P.M. The two-chain coiled-coil molecule of native epidermal keratin intermediate filaments is a type I-type II heterodimer. J. biol. Chem. 265, 8766–8774 (1990).

    CAS  PubMed  Google Scholar 

  6. Coulombe, P.A. & Fuchs, E. Elucidating the early stages of keratin filament assembly. J. Cell Biol. 111, 153–169 (1990).

    Article  CAS  Google Scholar 

  7. Lane, E.B. Keratin diseases. Curr. opin. Genet. Dev. 4, 412–418 (1994).

    Article  CAS  Google Scholar 

  8. Coulombe, P.A. et al. Point mutations in human keratin 14 genes of epidermolysis bullosa simplex patients: Genetic and functional analysis. Cell 66, 1301–1311 (1991).

    Article  CAS  Google Scholar 

  9. Bonifas, J.M., Rothman, A.L. & Epstein, E.H. Epidermolysis bullosa simplex: evidence in two families for keratin gene abnormalities. Science 254, 1202–1205 (1991).

    Article  CAS  Google Scholar 

  10. Lane, E.B. et al. A mutation in the conserved helix termination peptide of keratin 5 in hereditary skin blistering. Nature 356, 244–246 (1992).

    Article  CAS  Google Scholar 

  11. Rothnagel, J.A. et al. Mutations in the rod domains of keratins 1 and 10 in epidermolytic hyperkeratosis. Science 257, 1128–1130 (1992).

    Article  CAS  Google Scholar 

  12. Cheng, J. et al. The genetic basis of epidermolytic hyperkeratosis: a disorder of differentiation-specific epidermal keratin genes. Cell 70, 811–819 (1992).

    Article  CAS  Google Scholar 

  13. Chipev, C.C. et al. A leucine-proline mutation in the H1 subdomain of keratin 1 causes epidermolytic hyperkeratosis. Cell 70, 621–628 (1992).

    Article  Google Scholar 

  14. Langbein, L., Held, H.W., Moll, I. & Franke, W.W. Molecular characterization 38. of the body site-specific human epidermal cytokeratin 9: cDNA cloning, amino acid sequence,and tissue specificity of gene expression. Differentiation 55, 57–71 (1993).

    Article  CAS  Google Scholar 

  15. Reis, A. et al. Keratin 9 gene mutations In epidermolytic palmoplantar keratoderma (EPPK). Nature Genet. 6, 174–179 (1994).

    Article  CAS  Google Scholar 

  16. McLean, W.H.I. et al. Ichthyosis bullosa of Siemens — a disease involving keratin 2e. J. Invest. Dermatol. 103, 277–281 (1994).

    Article  CAS  Google Scholar 

  17. Kremer, H. et al. Ichthyosis bullosa of Siemens is caused by mutations in the keratin 2e gene. J. invest. Dermatol. 103, 286–289 (1994).

    Article  CAS  Google Scholar 

  18. Collin, C., Moll, R., Kubicka, S., Ouhayoun, J.-P. & Franke, W.W. Characterization of human cytokeratin 2, an epidermal cytoskeleton protein synthesized late during differentiation. Expl Cell Res. 202, 132–141 (1992).

    Article  CAS  Google Scholar 

  19. Munro, C.S. et al. A gene for pachyonychia congenita is closely linked to the keratin gene cluster on 17q12–q21. J. med. Genet. 31, 675–678 (1994).

    Article  CAS  Google Scholar 

  20. Romano, V. et al. Chromosomal assignment of keratin genes. Cytogenet. Cell Genet. 46, 683a (1987).

    Google Scholar 

  21. Romano, V. et al. Chromosomal assignments of human type I and type II cytokeratin genes to different chromosomes. Cytogenet. Cell Genet. 48, 148–151 (1988).

    Article  CAS  Google Scholar 

  22. Albertsen, H.M. et al. A physical map and candidate genes in the BRCA1 region on chromosome 17q12–q21. Nature Genet. 7, 472–479 (1994).

    Article  CAS  Google Scholar 

  23. McLean, W.H.I. & Lane, E.B. Intermediate filaments in disease. Curr Opin. Cell Biol. 7, 118–125 (1995).

    Article  CAS  Google Scholar 

  24. Korge, B.P., Gan, S.-Q., McBride, O.W., Mischke, D. & Steinert, P. Extensive size polymorphism of the human keratin 10 chain resides In the C-terminal V2 subdomain due to variable numbers and sizes of glycine loops. Proc. natn. Acad. Sci. U.S.A. 89, 910–914 (1992).

    Article  CAS  Google Scholar 

  25. Rosenberg, M., RayChaudhury, A., Shows, T., Le Beau, M.M. & Fuchs, E. A group of type I keratin genes on human chromosome 17: characterization and expression. Molec. Cell Biol. 8, 722–736 (1988).

    Article  CAS  Google Scholar 

  26. Troyanovsky, S.M., Leube, R.E. & Franke, W.W. Characterization of the human gene encoding cytokeratin 17 and its expression pattern. Eur. J. Cell. Biol. 50, 127–137 (1992).

    Google Scholar 

  27. Serrano, L., Sancho, J., Hirshberg, M. & Fersht, A.R. Alpha-helix stability in proteins I. J. molec. Biol. 227, 544–559 (1992).

    Article  CAS  Google Scholar 

  28. Horovitz, A., Matthews, J.M. & Fersht, A.R. Alpha-helix stability II. J. motec. Biol. 227, 560–568 (1992).

    Article  CAS  Google Scholar 

  29. Quinlan, R.A., Hutchison, C.J. & Lane, E.B. Intermediate Filaments (Academic Press Ltd., London, 1994).

    Google Scholar 

  30. McLean, W.H.I. et al. Mutations in the rod 1A domain of keratins 1 and 10 in bullous congential ichthyosiform erythroderma (BCIE). J. invest. Dermatol. 102, 24–30 (1994).

    Article  CAS  Google Scholar 

  31. Albers, K. & Fuchs, E. The expression of mutant epidermal keratin cDNAs transfected in simple epithelial and squamous cell carcinoma lines. J. Cell Biol. 105, 791–806 (1987).

    Article  CAS  Google Scholar 

  32. Albers, K. & Fuchs, E. Expression of mutant keratin cDNAs in epithelial cells reveals possible mechanisms for initiation and assembly of intermediate filaments. J. Cell Biol. 108, 1477–1493 (1989).

    Article  CAS  Google Scholar 

  33. Vassar, R., Coulombe, P.A., DegensteIn, L., Albers, K. & Fuchs, E. Mutant keratin expression in transgenic mice causes marked abnormalities resembling a human genetic skin disease. Cell 64, 365–380 (1991).

    Article  CAS  Google Scholar 

  34. Steinert, P.M., Marekov, L.N., Fraser, R.D.B. & Parry, D.A.D. Keratin intermediate filament structure: crosslinking studies yield quantitative information on molecular dimensions and mechanism of assembly. J. molec. Biol. 230, 436–452 (1993).

    Article  CAS  Google Scholar 

  35. Rothnagel, J.A. et al. Mutations in the rod domain of keratin 2e in patients with ichthyosis bullosa of Siemens. Nature Genet. 7, 485–490 (1994).

    Article  CAS  Google Scholar 

  36. Stoof, T.J., Boorsma, D.M. & Nickoloff, B.J. in The keratinocyte handbook (eds Leigh, I.M., Lane, E.B. & Watt, F.M.) 365–399 (Cambridge University Press, Cambridge, 1994).

    Google Scholar 

  37. Weiss, R.A., Eichner, R. & Sun, T.-T. Monoclonal antibody analysis of keratin expression in epidermal diseases: a 48-and 56-kdalton keratin as molecular markers for hyperproliferative keratjnocytes. J. Cell Biol. 96, 1397–1406 (1984).

    Article  Google Scholar 

  38. Smedts, F. et al. Changing patterns of keratin expression during progression of cervical intraepithelial neoplasia. Am. J. Patrol. 136, 657–668 (1990).

    CAS  Google Scholar 

  39. Smedts, F. et al. Basal cell keratins in cervical reserve cells and a comparison to their expression In cervical intraepithelial neoplasia. Am. J. Patrol. 140, 601–612 (1992).

    CAS  Google Scholar 

  40. Moll, R., Moll, I. & Wiest, W. Changes in the pattern of cytokeratin polypeptides in epidermis and other hair follicles during skin development in human fetuses. Differentiation 23, 170–178 (1982).

    Article  CAS  Google Scholar 

  41. Moll, R., Franke, W.W., Voic-Platzer, B. & Krepler, R. Different keratin polypeptides in epidermis and other epithetia of human skin: A specific cytokeratin of molecular weight 46,000 in epithelia of the pilosebaceous tract and basal cell enitheliomas. J. Cell Biol. 95, 285–295 (1982).

    Article  CAS  Google Scholar 

  42. Stark, H.-J., Breitkreutz, D., Limat, A., Bowden, P. & Fusenig, N.E. Keratins of the human hair follicle: “Hyperproliferative” keratins consistently expressed in outer root sheath cells in vivo and in vitro. Differentiation 35, 236–248 (1987).

    Article  CAS  Google Scholar 

  43. Held, H.W., Moll, I. & Franke, W.W. Patterns of expression of trichocytic and epithelial cytokeratins in mammalian tissues. II. Concomitant and mutually exclusive synthesis of trichocytic and epithelial cytokeratins in diverse human and bovine tissues (hair follicle, nail bed and matrix, lingual papilla, thymic reticulum). Differentiation 37, 215–230 (1988).

    Article  Google Scholar 

  44. Lane, E.B., Wilson, C.A., Hughes, B.R. & Leigh, I.M. Stem cells in hair follicles:cytoskeletal studies. Ann. N.Y. Acad. Sci. 642, 197–213 (1991).

    Article  CAS  Google Scholar 

  45. Wilson, C.A., Dean, D., Lane, E.B., Dawber, R.P.R. & Leigh, I.M. In psoriatic scalp: morphology and expression of epithelial keratins. Br. J. Dermatol. 131, 191–200 (1993).

    Article  Google Scholar 

  46. Troyanovsky, S.M., Guelstein, V.I., Tchipysheva, T.A., Krutovskikh, V.A. & Bannikov, G.A. Patterns of expression of K17 in human epithelia: dependency on cell position. J. Cell Sci. 93, 419–426 (1989).

    PubMed  Google Scholar 

  47. Wetzels, R.H. et al. Basal cell-specific and hyperproliferation-related keratins in human breast cancer. Am. J. Pathol. 138, 751–763 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rhelnwald, J.G. & Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6, 331–344 (1975).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLean, W., Rugg, E., Lunny, D. et al. Keratin 16 and keratin 17 mutations cause pachyonychia congenita. Nat Genet 9, 273–278 (1995). https://doi.org/10.1038/ng0395-273

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0395-273

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing