Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans

Abstract

We identified a mutation in the ceruloplasmin (Cp) gene in a Japanese family with aceruloplasminemia, some of whose members showed extrapyramidal disorders, cerebellar ataxia, and diabetes mellitus. A post–mortem study of the proband revealed excessive iron deposition mainly in the brain, liver and pancreas. The G to A transition at the splice acceptor site introduces a premature termination codon at the amino acid position 991 by defective splicing, thereby truncating the carboxyl terminus of Cp in affected individuals. We conclude that the mutation in the Cp gene is associated with systemic hemosiderosis in humans.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Poulik, M.D. & Weiss, M.L. Ceruloplasmin. The Plasma Proteins Vol II (ed. Putnam, F.W.) 51–108 (Academic, New York, 1975).

    Chapter  Google Scholar 

  2. 2

    Frieden, E. Ceruloplasmin: a multifunctional metalloprotein of vertebrate plasma. Metal Ions in Biological Systems Vol 13 (ed. Sigel, H.) 117–142 (Marcel Dekker, New York, 1961).

    Google Scholar 

  3. 3

    Cousins, R.J. orption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and Ceruloplasmin. Physiol. Rev. 65, 238–309 (1985).

    CAS  Article  Google Scholar 

  4. 4

    Takahashi, N., Ortel, T.L. & Putnam, F.W. Single-chain structure of human Ceruloplasmin: the complete amino acid sequence of the whole molecule. Proc. natn. Acad. Sci. U.S.A. 81, 390–394 (1984).

    CAS  Article  Google Scholar 

  5. 5

    Dwulet, F.E. & Putnam, F.W. Internal duplication and evolution of human Ceruloplasmin. Proc. natn. Acad. Sci. U.S.A 78, 2805–2809 (1981).

    CAS  Article  Google Scholar 

  6. 6

    Takahashi, N., Bauman, R.A., Ortel, T.L., Dwulet, F.E., Wang, C.-C. & Putnam, F.W. Internal triplication in the structure of human Ceruloplasmin. Proc. natn. Acad. Sci. U.S.A. 80, 115–119 (1983).

    CAS  Article  Google Scholar 

  7. 7

    Ortel, T.L., Takahashi, N. & Putnam, F.W. Structural model of human Ceruloplasmin based on internal triplication, hydrophllic/hydrophoblc character, and secondary structure of domains. Proc. natn. Acad. Sci. U.S.A. 81, 4761–4765 (1984).

    CAS  Article  Google Scholar 

  8. 8

    Koschinsky, M.L., Funk, W.D., van Cost, B.A. & MacGillivray, R.T.A. Complete cDNA sequence of human preceruloplasmin. Proc. natn. Acad. Sci. U.S.A. 83, 5086–6090 (1986).

    CAS  Article  Google Scholar 

  9. 9

    Yang, F. et al. Characterization, mapping, and expression of the human Ceruloplasmin gene. Proc. natn. Acad. Sci. U.S.A. 83, 3257–3261 (1986).

    CAS  Article  Google Scholar 

  10. 10

    Mercer, J.F.B. & Grimes, A. Isolation of a human Ceruloplasmin cDNA clone that includes the N-terminal leader sequence. FEBS Letts. 203, 185–190 (1986).

    CAS  Article  Google Scholar 

  11. 11

    Danks, D.M. Disorders of copper transport. The Metabolic Basis of Inherited Disease (eds Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 1411–1431 (McGraw-Hill, New York, 1989).

    Google Scholar 

  12. 12

    Vulpe, C., Levlnson, B., Whitney, S., Packman, S. & Gitschier, J. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper- transporting ATPase. Nature Genet. 3, 7–13 (1993).

    CAS  Article  Google Scholar 

  13. 13

    Chelly, J. et al. Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nature Genet. 3, 14–19 (1993).

    CAS  Article  Google Scholar 

  14. 14

    Mercer, J.F.B. et al. Isolation of a partial candidate gene for Menkes disease by positional cloning. Nature Genet. 3, 20–25 (1993).

    CAS  Article  Google Scholar 

  15. 15

    Bull, P.C., Thomas, G.R., Rommens, J.M., Forbes, J.R. & Cox, D.W. The Wilson disease gene is a putative copper transporting P-type ATP ase similar to the Menkes gene. Nature Genet. 5, 327–337 (1993).

    CAS  Article  Google Scholar 

  16. 16

    Petrukhin, K. et al. Mapping, cloning and genetic characterization of the region containing the Wilson disease gene. Nature Genet. 5, 338–343 (1993).

    CAS  Article  Google Scholar 

  17. 17

    Tanzl, R.E. et al. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nature Genet. 5, 344–350 (1993).

    Article  Google Scholar 

  18. 18

    Yamaguchi, Y., Helny, M.E. & Gitlin, J.D. Isolation and characterization of a human liver cDNA as a candidate gene for Wilson disease. Biochem. biophys. Res. Commun. 197, 271–277 (1993).

    CAS  Article  Google Scholar 

  19. 19

    Miyajima, H. et al. Familial apoceruloplasmin deficiency associated with blepharospasm and retinal degeneration. Neurology 37, 761–767 (1987).

    CAS  Article  Google Scholar 

  20. 20

    Morita, H., Inoue, A. & Yanagisawa, N. A case with Ceruloplasmin deficiency which showed dementia, ataxiaand Iron deposition in the brain. (in Japanese) Clin. Neurol. (Tokyo) 32, 483–487 (1992).

    CAS  Google Scholar 

  21. 21

    Logan, I., Harueyson, K.B., Wilsdom, G.B., Hughes, A.E. & Archbold, P.R. Hereditary caeruloplasmin deficiency, dementia and diabetes mellitus. Q. J. Med. 87, 663–670 (1994).

    CAS  Google Scholar 

  22. 22

    Morita, H. et al. Hereditary Ceruloplasmin deficiency with hemosiderosls: a clinicopathological study of a Japanese family. Ann. Neurol. (In the press).

  23. 23

    Dancis, A. et al. Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper In Iron transport. Cell 76, 393–402 (1994).

    CAS  Article  Google Scholar 

  24. 24

    Askwith, C. et al. The FET3 gene of S. cerevisiae encodes a multlcopper oxidase required for ferrous Iron uptake. Cell 76, 403–410 (1994).

    CAS  Article  Google Scholar 

  25. 25

    Hiyamuta, S. & Takeichi, N. Lack of copper binding sites in Ceruloplasmin of LEC rats with abnormal copper metabolism. Biochem. Biophys. Res Commun. 197, 1140–1145 (1993).

    CAS  Article  Google Scholar 

  26. 26

    Hiyamuta, S. & Ito, K. Monoclonal antibody against the active site of caeruloplasmin and the ELJSA system detecting active caeruloplasmin. Hybridoma 13, 139–141 (1994).

    CAS  Article  Google Scholar 

  27. 27

    Koschinsky, M.L., Chow, B.K.-C., Schwartz, J., Hamerton, J.L. & MacGillivray, R.T.A. Isolation and characterization of a processed gene for human Ceruloplasmin. Biochemistry 26, 7760–7767 (1987).

    CAS  Article  Google Scholar 

  28. 28

    Garey, C.E., Schwarzman, A.L., Rise, M.L. & Seyfried, T.N. Ceruloplasmin gene defect associated with epilepsy in EL mice. Nature Genet. 6, 426–431 (1994).

    CAS  Article  Google Scholar 

  29. 29

    Daar, I.O. & Maquat, L.E. Premature translation termination mediates triosephosphate isomerase mRNA degradation. Molec. Cell. Biol. 8, 802–813 (1988).

    CAS  Article  Google Scholar 

  30. 30

    Urlaub, G., Mitchell, P.J., Ciudad, C.J. & Chasin, L.A. Nonsense mutations in the dihydrofolate reductase gene affect RNA processing. Molec. Cell. Biol. 9, 2868–2880 (1989).

    CAS  Article  Google Scholar 

  31. 31

    Fojo, S.S. et al. A nonsense mutation in the apolipoprotein C-IIPadova gene in a patient with apolipoprotein C-II deficiency. J. clin. Invest. 84, 1215–1219 (1989).

    CAS  Article  Google Scholar 

  32. 32

    Cheng, J., Fogel-Petrovic, M. & Maquat, L.E. Translation to near the distal end of the penultimate exon is required for normal levels of spliced triosephosphate Isomerase mRNA. Molec. Cell. Biol. 10, 5215–5225 (1990).

    CAS  Article  Google Scholar 

  33. 33

    Hamosh, A. et al. Severe deficiency of cystic fibrosis transmembrane conductance regulator messenger RNA carrying nonsense mutations R553X and W1316X in respiratory epithelial cells of patients with cystic fibrosis. J clin. Invest. 88, 1880–1885 (1991).

    CAS  Article  Google Scholar 

  34. 34

    Mclntosh, I., Hamosh, A. & Dietz, H.C. Nonsense mutations and diminished mRNA levels. Nature Genet. 4, 219 (1993).

    Article  Google Scholar 

  35. 35

    Sato, M. & Gitlin, J.D. Mechanisms of copper Incorporation during the biosynthesis of human Ceruloplasmin. J. biol. Chem. 266, 5128–6134 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Noyer, M. & Putnam, F.W. A circular dichroism study of undegraded human Ceruloplasmin. Biochemistry 20, 3536–3542 (1981).

    CAS  Article  Google Scholar 

  37. 37

    Kingston, I.B., Kingston, B.L. & Putnam, F.W. Complete amino acid sequence of a histldine-rich proteolytlc fragment of human Ceruloplasmin. Proc. natn. Acad. Sci. U.S.A. 76, 1668–1672 (1979).

    CAS  Article  Google Scholar 

  38. 38

    Kingston, I.B., Kingston, B.L. & Putnam, F.W. Primary structure of ahistldine rich proteolytic fragment of human Ceruloplasmin I. amino acid sequence of the cyanogen bromide peptides. J. biol. Chem. 255, 2878–2885 (1980).

    CAS  PubMed  Google Scholar 

  39. 39

    Kingston, I.B., Kingston, B.L. & Putnam, F.W. Primary structure of ahlstldlne rich proteolytic fragment of human Ceruloplasmin II. amino acid sequence of the tryptic peptides. J. biol. Chem. 255, 2886–2896 (1980).

    CAS  PubMed  Google Scholar 

  40. 40

    Kingston, I.B., Kingston, B.L. & Putnam, F.W. Chemical evidence that proteolytic cleavage causes the heterogeneity present in human Ceruloplasmin preparations. Proc. natn. Acad. Sci. U.S.A. 74, 5377–5381 (1977).

    CAS  Article  Google Scholar 

  41. 41

    Rydén, L. Model of the active site in the blue oxidases based on the ceruloplasmin-plastocyanin homology. Proc. natn. Acad. Sci. U.S.A. 79, 6767–6771 (1982).

    Article  Google Scholar 

  42. 42

    Osaki, S., Johnson, D.A. & Frieden, E. The possible significance of the ferrous oxidase activity of Ceruloplasmin in normal human serum. J. biol. Chem. 241, 2746–2751 (1966).

    CAS  PubMed  Google Scholar 

  43. 43

    Lee, G.R., Nacht, S., Lukens, J.N. & Cartwright, G.E. Iron metabolism in copper-deficient swine. J. clin. Invest. 47, 2058–2069 (1968).

    CAS  Article  Google Scholar 

  44. 44

    Ragan, H.A., Nacht, S., Lee, G.R., Bishop, C.R. & Cartwright, G.E. Effect of Ceruloplasmin on plasma iron in copper-deficient swine. Am. J. Physiol. 217, 1320–1323, (1969).

    CAS  PubMed  Google Scholar 

  45. 45

    Roeser, H.P., Lee, G.R., Nacht, S. & Cartwright, G.E. The role of Ceruloplasmin in iron metabolism. J. clin. Invest. 49, 2408–2417 (1970).

    CAS  Article  Google Scholar 

  46. 46

    Osaki, S., Johnson, D.A. & Frieden, E. The mobilization of iron from the perfused mammalian liver by a serum copper enzyme, ferroxidase I. J. biol Chem. 246, 3018–3023 (1971).

    CAS  PubMed  Google Scholar 

  47. 47

    Owen, C.A.Jr., Effects of iron on copper metabolism and copper on iron metabolism in rats. Am. J. Physiol. 224, 514–518 (1973).

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yoshida, K., Furihata, K., Takeda, S. et al. A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans. Nat Genet 9, 267–272 (1995). https://doi.org/10.1038/ng0395-267

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing