Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation

Abstract

Genomic instability at simple repeated sequences (SRS) is a landmark for some sporadic and hereditary cancers of the colon. We have identified several human tumour cell lines with up to 1,000–fold increases in mutation rates for endogenous microsatellite sequences, relative to normal cells or tumour cells without the mutator phenotype and show that they are very early events in tumorigenesis. Our in vivo and in vitro results show that the genomic instability persists after transformation and that microsatellite mutations accumulate as consecutive somatic slippage events of a single or a few repeated units. This mechanism may account for the repeat expansions in triplet hereditary diseases and the same defect in replication fidelity in non–polyposis colon cancer could also contribute to the non–mendelian anticipation in these diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Bos, J.L. et al. Prevalence of ras gene mutations in human colorectal cancer. Nature 327, 293–297 (1987).

    CAS  Article  Google Scholar 

  2. 2

    Forrester, K., Almoguera, C., Han, K., Grizzle, W.E. & Perucho, M. Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature 327, 298–303 (1987).

    CAS  Article  Google Scholar 

  3. 3

    Baker, S.J. et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244, 217–221 (1989).

    CAS  Article  Google Scholar 

  4. 4

    Fearon, E.R. et al. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247, 49–56 (1990).

    CAS  Article  Google Scholar 

  5. 5

    Kinzler, K. et al. Identification of FAP locus genes from chromosome 5q21. Science 253, 661–665 (1991).

    CAS  Article  Google Scholar 

  6. 6

    Groden, J. et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66, 589–600 (1991).

    CAS  Article  Google Scholar 

  7. 7

    Fearon, E. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    CAS  Article  Google Scholar 

  8. 8

    Fearon, E. & Jones, P.A. Progressing toward a molecular description of colorectal cancer development. FASEB J. 6, 2783–2790 (1992).

    CAS  Article  Google Scholar 

  9. 9

    Ionov, J., Peinado, M.A., Malkhosyan, S., Shibata, D. & Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363, 558–561 (1993).

    CAS  Article  Google Scholar 

  10. 10

    Thibodeau, S., Bren, G. & Schaid, D. Microsatellite instability in cancer of the proximal colon. Science 260, 816–819 (1993).

    CAS  Article  Google Scholar 

  11. 11

    Aaltonen, L.A. et al. Clues to the pathogenesis of familial colorectal cancer. Science 260, 812–816 (1993).

    CAS  Article  Google Scholar 

  12. 12

    Nelson, R.L. & Mason, H.S. An explicit hypothesis for chemical carcinogenesis. J. theor. Biol. 37, 197–200 (1972).

    CAS  Article  Google Scholar 

  13. 13

    Loeb, L.A., Springgate, C.F., & Battula, N. Errors in DNA replication as a basis of malignant changes. Cancer Res. 34, 2311–2321 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975).

    CAS  Article  Google Scholar 

  15. 15

    Lynch, H.T. et al. Hereditary nonpolyposis colorectal cancer (Lynch syndrome I and II). Cancer Genet. Cytogenet. 143, 160–170 (1991).

    Google Scholar 

  16. 16

    Peltomaki, P. et al. Genetic mapping of a locus predisposing to human colorectal cancer. Science 260, 810–812 (1993).

    CAS  Article  Google Scholar 

  17. 17

    Lindblom, A., Tannergard, P., Werelius, B. & Nordenskjold, M. Genetic mapping of a second locus predisposing to hereditary non-polyposis colon cancer. Nature Genet. 5, 279–282 (1993).

    CAS  Article  Google Scholar 

  18. 18

    Peinado, M.A., Malkhosyan, S., Velazquez, A. & Perucho, M. Isolation and characterization of allelic losses and gains in colorectal tumours by arbitrarily primed polymerasechain reaction. Proc. natn. Acad. Sci. U.S.A. 89, 10065–10069 (1992).

    CAS  Article  Google Scholar 

  19. 19

    Hearne, K.M., Ghosh, S. & Todd, J.A. Microsatellites for linkage analysis of genetic traits. Trends Genet. 8, 288–293 (1992).

    CAS  Article  Google Scholar 

  20. 20

    Weber, J.L. & Wong, C. Mutation of human short tandem repeats. Hum. molec. Genet. 2, 1123–1128 (1993).

    CAS  Article  Google Scholar 

  21. 21

    Strand, M., Prolla, T., Liskay, M.R. & Petes, T.D. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365, 274–276 (1993).

    CAS  Article  Google Scholar 

  22. 22

    Streisinger, G. et al. Frameshift mutations and the genetic code. Cold Spring Harbor Symp. quant. Biol 31, 77–84 (1966).

    CAS  Article  Google Scholar 

  23. 23

    Richards, R.I. & Sutherland, G.R. Dynamic mutations: A new class of mutations causing human disease. Cell 70, 709–712 (1992).

    CAS  Article  Google Scholar 

  24. 24

    Mandel, J. Questions of expansion. Nature Genet. 4, 8–9 (1993).

    CAS  Article  Google Scholar 

  25. 25

    Shibata, D. et al. Specific genetic analysis of microscopic tissue after Selective Ultraviolet Radiation Fractionation and the Polymerase Chain Reaction. Am. J. Pathol. 141, 1–5 (1992).

    Google Scholar 

  26. 26

    Shibata, D., Schaeffer, J., Li, Z., Capella, G. & Perucho, M. Genetic heterogeneity of the c-K-ras locus In colorectal adenomas but not adenocarcinomas. J. natn. Cancer Inst. 85, 1058–1063 (1993).

    CAS  Article  Google Scholar 

  27. 27

    Lasko, D., Cavenee, W. & Nordenskjold, M. Loss of constitutional heterozygosity in human cancer. A. Rev. Genetics 25, 281–314 (1991).

    CAS  Article  Google Scholar 

  28. 28

    Pardue, M.L., Instability of Chromosomes and Genomes. Cell 66, 427–431 (1991).

    CAS  Article  Google Scholar 

  29. 29

    Naumova, A. & Sapienza, C. The genetics of retinoblastoma, revisited. Am. J. hum. Genet. (in the press).

  30. 30

    Ripley, L.S. Frameshift mutations: Determinants of specificity. Ann. Rev. Genet. 24, 189–213 (1990).

    CAS  Article  Google Scholar 

  31. 31

    Fashena, S.J., Reeves, R. & Ruddle, N.H. A poly(dA-dT) upstream activating sequence binds high-mobility group I protein and contributes to lymphotoxin (tumor necrosis factor-B) gene regulation. Molec. Cell. Biol. 12, 894–903 (1992).

    CAS  Article  Google Scholar 

  32. 32

    Foulds, L. The experimental study of tumour progression: A review. Cancer Res. 14, 327–337 (1954).

    CAS  PubMed  Google Scholar 

  33. 33

    Nowell, P. The clonal evolution of tumour cell populations. Science 194, 23–28 (1976).

    CAS  Article  Google Scholar 

  34. 34

    Brattain, M.G., Fine, W.D., Khaled, F.M., Thompson, J. & Brattain, D.E. Heterogeneity of malignant cells from a human colonic carcinoma. Cancer Res. 41, 1751–1756 (1981).

    CAS  PubMed  Google Scholar 

  35. 35

    Leith, J.T. & Dexter, D.L. in Mammalian tumour cell heterogeneity 11–22 and 97–120 (CRC Press, Boca Raton, Florida, 1986).

    Google Scholar 

  36. 36

    Kunkel, T.A. Frameshift mutagenesis by eucaryotic DNA polymerases in vitro. J. biol. Chem. 261, 13581–13587 (1986).

    CAS  Google Scholar 

  37. 37

    Kunkel, T. Biological asymmetries and the fldelity of eukaryotic DNA replication. BioEssays 14, 303–308 (1992).

    CAS  Article  Google Scholar 

  38. 38

    Sinden, R.R. & Wells, R.D. DNA structure, mutations, and human genetic disease. Curr. Op. Biotech. 3, 612–622 (1992).

    CAS  Article  Google Scholar 

  39. 39

    Levinson, G. & Gutman, G.A. Slipped-Strand mispairing: a major mechanism for DNA sequence evolution. Molec. Biol. Evol. 4 (3), 203–221 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Trinh, Q. & Sinden, R.R. Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli. Nature 352, 544–547 (1991).

    CAS  Article  Google Scholar 

  41. 41

    Beckman, J.S. & Weber, J.L. Survey of human and rat microsatellites. Genomics 12, 627–631 (1992).

    CAS  Article  Google Scholar 

  42. 42

    Kem, S.E. Clonality: more than just a tumor-progression model. J. natn. Cancer Inst. 85, 1020–1021 (1993).

    Article  Google Scholar 

  43. 43

    Lynch, H.T. et al. Flat adenomas in a colon cancer-prone kindred. J. natn. Cancer Inst. 80, 278–282 (1988).

    CAS  Article  Google Scholar 

  44. 44

    Kunkel, T. Slippery DNA and diseases. Nature 365, 207–208 (1993).

    CAS  Article  Google Scholar 

  45. 45

    Welsh, J. & McClelland, M. Fingerprinting genomes using PCR with arbitrary primers. Nucl. Acids Res. 18, 7213–7218 (1990).

    CAS  Article  Google Scholar 

  46. 46

    Mullis, K.B., & Faloona, F.A. Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction. Meth. Enzymol. 155, 335–350 (1987).

    CAS  Article  Google Scholar 

  47. 47

    Weber, J.L., Kwitek, A.E. & May, P.E. Dinucleotide repeat polymorphisms at the D5S107, D5S11, D5S117 and D5S118 loci. Nucl. Acids Res. 18, 4035 (1990).

    CAS  Article  Google Scholar 

  48. 48

    Weber, J.L., Kwitek, A.E. & May, P.E. Dinucleotide repeat polymorphisms at the D6S87 locus. Nuc. Acid Res. 18, 4636 (1990).

    Google Scholar 

  49. 49

    Weber, J.L. et al. Dinucleotide repeat polymorphisms at the D17S250 and D17S261 loci. Nuc. Acid Res. 18, 4640 (1990).

    Google Scholar 

  50. 50

    Leibovitz, A. et al. Classification of human colorectal adenocarcinoma cell lines. Cancer Res. 36, 4562–4569 (1976).

    CAS  PubMed  Google Scholar 

  51. 51

    Tom, B.H. et al. Human Colonic Adenocarcinoma Cells. I. Establishment and Description of a New Line. In Vitro 12 (13), 180–191 (1976).

    CAS  Article  Google Scholar 

  52. 52

    Peinado, M.A., Fernandez-Renart, M., Capella, G., Wilson, L. & Perucho, M. Mutations in the p53 suppressor gene do not correlate with c-K-ras oncogene mutations in colorectal cancer. Int. J. Oncol. 2, 123–134 (1993).

    CAS  Google Scholar 

  53. 53

    Dexter, D.L., Barbosa, J.A. & Calabresi, P. N, N-dimethylformamide-induced alteration of cell culture characteristics and loss of tumorigenicity in cultured human colon carcinoma cells. Cancer Res. 39, 1020–1025 (1979).

    CAS  PubMed  Google Scholar 

  54. 54

    Sugarbaker, P., Gunderson, L. & Wittes, R., Colorectal Cancer. In Cancer, principles and practice of oncology. (eds De Vita, V., Hellman, S.& Rosenberg, S.) 814–815 (J. B. Lippincott Co, Philadelphia, 1985).

    Google Scholar 

  55. 55

    Fishel, R. et al. The human mutatorgene homolog MSH2 and its association with Hereditary Nonpolyposis Colon Cancer. Cell 75, 1027–1038 (1993).

    CAS  Article  Google Scholar 

  56. 56

    Leach, F. et al. Mutations of a mutS homolog in Hereditary Nonpolyposis Colorectal Cancer. Cell 75, 1215–1225 (1993).

    CAS  Article  Google Scholar 

  57. 57

    Parsons, R. et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75, 1227–1236 (1993).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shibata, D., Peinado, M., lonov, Y. et al. Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nat Genet 6, 273–281 (1994). https://doi.org/10.1038/ng0394-273

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing