Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Production of a model for Lesch–Nyhan syndrome in hypoxanthine phosphoribosyltransferase–deficient mice

Abstract

The inherited disease Lesch–Nyhan syndrome, which is caused by a deficiency of the enzyme hypoxanthine phosphoribosyltransferase (HPRT), is characterized by behavioural alterations, including self–injurious behaviour and mental retardation. Although HPRT–deficient mice have been generated using the embryonic stem cell system, no spontaneous behavioural abnormalities had been reported. We examined whether mice were more tolerant of HPRT deficiency because they were more reliant on adenine phosphoribosyltransferase (APRT) than HPRT for their purine salvage. The administration of an APRT inhibitor to HPRT–deficient mice induced persistent self–injurious behaviour. This combined genetic and biochemical model will facilitate the study of Lesch–Nyhan syndrome and the evaluation of novel therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lesch, M. & Nyhan, W.L. A familial disorder of uric acid metabolism and central nervous system function. Am. J. Med. 36, 561–570 (1964).

    Article  CAS  Google Scholar 

  2. Davidson, B.L. et al. Identification of 17 independent mutations responsible for human hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency. Am. J. hum. Genet 48, 951–958 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Fujimori, S., Davidson, B.L., Kelley, W.N. & Palella, T.D. Identification of a single nucleotide change in the hypoxanthine-guanine phosphoribosyltransferase gene (HPRTYale) responsible for Lesch-Nyhan syndrome. J. clin. Invest. 83, 11–13 (1989).

    Article  CAS  Google Scholar 

  4. Gibbs, R.A., Nguyen, P.N., McBride, L.J., Koepf, S.M. & Caskey, C.T. Identification of mutations leading to the Lesch-Nyhan syndrome by automated direct DNA sequencing of in vitro amplified cDNA. Proc. natn. Acad. Sci. U.S.A. 86, 1919–1923 (1989).

    Article  CAS  Google Scholar 

  5. Keough, D.T., Gordon, R.B., de Jersey, J. & Emmerson, B.T. Biochemical basis of hypoxanthine-guanine phosphoribosyltransferase deficiency in nine families. J. inher. metab. Dis. 11, 229–238 (1988).

    Article  CAS  Google Scholar 

  6. Sinnett, D. et al. Lesch-Nyhan syndrome: molecular investigation of three French Canadian families using a hypoxanthine-guanine phosphoribosyltransferase cDNA probe. Hum. Genet. 81, 4–8 (1988).

    Article  CAS  Google Scholar 

  7. Lake, C.R. & Ziegler, M.G. Lesch-Nyhan syndrome: low dopamine-β-hydroxylase activity and diminished sympathetic response to stress and posture. Science 196, 905–906 (1977).

    Article  CAS  Google Scholar 

  8. Lloyd, K.G. et al. Biochemical evidence of dysfunction of brain neurotransmitters in the Lesch-Nyhan syndrome. New Engl. J. Med. 305, 1106–1111 (1981).

    Article  CAS  Google Scholar 

  9. Mueller, K., Saboda, S., Palmour, R. & Nyhan, W.L. Self-injurious behavior produced in rats by daily caffeine and continuous amphetamine. Pharmacol. Biochem. Behav. 17, 613–617 (1982).

    Article  CAS  Google Scholar 

  10. Lloyd, K.G. & Stone, T.W. Chronic methylxanthine treatment in rats: a comparison of Wistar and Fischer 344 strains. Pharmacol. Biochem. Behav. 14, 827–830 (1981).

    Article  CAS  Google Scholar 

  11. Peters, J.M. Caffeine-induced hemorrhagic automutilation. Arch. Int. Pharmacodyn. 169, 139–146 (1967).

    CAS  PubMed  Google Scholar 

  12. Minana, M.D., Portoles, M., Jorda, A. & Grisolia, S. Lesch-Nyhan syndrome, caffeine model: increase of purine and pyrimidine enzymes in rat brain. J. Neurochem. 43, 1556–1560 (1984).

    Article  CAS  Google Scholar 

  13. Razzak, A., Fujiwara, M., Oishi, R. & Ueki, S. Possible involvement of a central noradrenergic system in automutilation induced by clonidine in mice. Japan J. Pharmacol. 27, 145–152 (1977).

    Article  CAS  Google Scholar 

  14. Ushijima, I., Katsuragi, T. & Furukawa, T. Involvement of adenosine receptor activities in aggressive responses produced by clonidine in mice. Psychopharmacol. 83, 335–339 (1984).

    Article  CAS  Google Scholar 

  15. Breese, G.R., Criswell, H.E., Duncan, G.E. & Mueller, R.A. A dopamine deficiency model of Lesch-Nyhan disease − the neonatal-6-OHDA-lesioned rat. Brain Res. Bull. 25, 477–484 (1990).

    Article  CAS  Google Scholar 

  16. Goldstein, M. Dopaminergic mechanisms in self-inflicting biting behavior. Psychopharmacol. Bull. 25, 349–352 (1989).

    CAS  PubMed  Google Scholar 

  17. Jinnah, H.A., Gage, F.H. & Friedmann, T. Animal models of Lesch-Nyhan syndrome. Brain Res. Bull. 25, 467–475 (1990).

    Article  CAS  Google Scholar 

  18. Hooper, M., Hardy, K., Handyside, A., Hunter, S. & Monk, M. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326, 292–295 (1987).

    Article  CAS  Google Scholar 

  19. Kuehn, M.R., Bradley, A., Robertson, E.J. & Evans, M.J. A potential animal model for Lesch-Nyhan syndrome through introduction of HPRT mutations into mice. Nature 326, 295–298 (1987).

    Article  CAS  Google Scholar 

  20. Dunnett, S.B., Sirinathsinghji, D.J.S., Heavens, R., Rogers, D.C. & Kuehn, M.R. Monoamine deficiency in a transgenic (Hprt) mouse model of Lesch-Nyhan syndrome. Brain Res. 501, 401–406 (1989).

    Article  CAS  Google Scholar 

  21. Finger, S., Heavens, R.P., Sirinathsinghji, D.J.S., Kuehn, M.R. & Dunnett, S.B. Behavioral and neurochemical evaluation of a transgenic mouse model of Lesch-Nyhan syndrome. J. Neurol. Sci. 86, 203–213 (1988).

    Article  CAS  Google Scholar 

  22. Jinnah, H.A., Gage, F.H. & Friedmann, T. Amphetamine-induced behavioral phenotype in a hypoxanthine-guanine phosphoribosyltransferase-deficient mouse model of Lesch-Nyhan syndrome. Behav. Neurosci. 105, 1004–1012 (1991).

    Article  CAS  Google Scholar 

  23. Williamson, D.J., Hooper, M.L. & Melton, D.W. Mouse models of hypoxanthine phosphoribosyltransferase deficiency. J. inher. metab. Dis. 15, 665–673 (1992).

    Article  CAS  Google Scholar 

  24. Moyer, J.D. & Henderson, J.F. Salvage of circulating hypoxanthine by tissues of the mouse. Can. J. Biochem. cell Biol. 61, 1153–1157 (1983).

    Article  CAS  Google Scholar 

  25. Brosh, S., Sperling, O., Bromberg, Y. & Sidi, Y. Developmental changes in the activity of enzymes of purine metabolism in rat neuronal cells in culture and in whole brain. J. Neurochem. 54, 1776–1781 (1990).

    Article  CAS  Google Scholar 

  26. Rosenbloom, F.M., Kelley, W.N., Miller, J., Henderson, F. & Seegmiller, J.E. Inherited disorder of purine metabolism: correlation between central nervous system dysfunction and biochemical defects. J. Am. med. Assoc. 202, 175–177 (1967).

    Article  CAS  Google Scholar 

  27. Leese, H.J. et al. Proflies of hypoxanthine guanine phosphoribosyl transferase and adenine phosphoribosyl transferase activities measured in single preimplantation human embryos by high-performance liquid chromatography. J. Reprod. Pert. 91, 197–202 (1991).

    Article  CAS  Google Scholar 

  28. Moore, T.F. & Whittingham, D.G. Imprinting of phosphoribosyltransferases during preimplantation development of the mouse mutant, Hprtb-m3. Development 115, 1011–1016 (1992).

    CAS  PubMed  Google Scholar 

  29. Szybalska, E.H. & Szybalski, W. Genetics of human cell lines, IV. DNA-mediated heritable transformation of a biochemical trait. Proc. natn. Acad. Sci. U.S.A. 48, 2026–2034 (1962).

    Article  CAS  Google Scholar 

  30. Williamson, D.J. et al. Analysis of forebrain dopaminergic pathways in HPRT-mice. Adv. Exp. med. Biol. 309B, 269–272 (1991).

    Article  CAS  Google Scholar 

  31. Breese, G.R. et al. Behavioral differences between neonatal and adult 6-hydroxydopamine-treated rats to dopamine agonists: relevance to neurological symptoms in clinical syndromes with reduced brain dopamine. J. Pharmcol. exp. Ther. 231, 343–354 (1984).

    CAS  Google Scholar 

  32. Fray, P.J., Sahakian, B.J., Robbins, T.W., Koob, G.F. & Iversen, S.D. An observational method for quantifying the behavioural effects of dopamine agonists: contrasting effects of d-amphetamine and apomorphine. Psychopharmacol. 69, 253–259 (1980).

    Article  CAS  Google Scholar 

  33. Lewis, M.H., Baumeister, A.A., McCorkle, D.L. & Mailman, R.B. A computer-supported method for analyzing behavioral observations: studies with stereotypy. Psychopharmacol. 85, 204–209 (1985).

    Article  CAS  Google Scholar 

  34. Bulfield, G., Siller, W.G., Wight, P.A.L. & Moore, K.J. X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc. natn. Acad. Sci. U.S.A. 81, 1189–1192 (1984).

    Article  CAS  Google Scholar 

  35. Stedman, H.H. et al. The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352, 536–539 (1991).

    Article  CAS  Google Scholar 

  36. Snouwaert, J.N. et al. An animal model for cystic fibrosis made by gene targeting. Science 257, 1083–1088 (1992).

    Article  CAS  Google Scholar 

  37. Dorin, J.R. et al. Cystic fibrosis in the mouse by targeted insertional mutagenesis. Nature 359, 211–215 (1992).

    Article  CAS  Google Scholar 

  38. Tybulewicz, V.L.J. et al. Animal model of Gaucher's disease from targeted disruption of the mouse glucocerebrosidase gene. Nature 357, 407–410 (1992).

    Article  CAS  Google Scholar 

  39. Lee, E.Y.-H. et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359, 288–294 (1992).

    Article  CAS  Google Scholar 

  40. Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).

    Article  CAS  Google Scholar 

  41. Clarke, A.R. et al. Requirement for a functional Rb-1 gene in murine development. Nature 359, 328–330 (1992).

    Article  CAS  Google Scholar 

  42. Donehower, L.A. et al. Mice deficient for p53 are developmental^ normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  Google Scholar 

  43. Simmonds, H.A. 2,8-Dihydroxyadenine lithiasis. Clin. Chim. Acta 160, 103–108 (1986).

    Article  CAS  Google Scholar 

  44. Smith, A.G. Culture and differentiation of embryonic stem cells. J. tiss. cult. Meth. 13, 89–94 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, CL., Melton, D. Production of a model for Lesch–Nyhan syndrome in hypoxanthine phosphoribosyltransferase–deficient mice. Nat Genet 3, 235–240 (1993). https://doi.org/10.1038/ng0393-235

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0393-235

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing