
Genes that are expressed from a single
allele in a random manner have one
allele replicated earlier than the other.
A new study shows that this replica-
tion asynchrony is coordinated within
chromosome pairs.

The accompanying photograph seems at
first glance to capture a straightforward
fluorescence in situ hybridization experi-
ment, with each colored dot representing a
tagged probe bound to a particular locus.
But the details of the data tell an intriguing
story. The image is taken from findings
presented on page 339 by Nandita Singh
and colleagues showing that chromo-
some-pair non-equivalence is not limited
to the specific instances of imprinting and
X-chromosome inactivation but may be
much more widespread, at least in the
mouse genome.

The results of Singh et al. are part of a
line of work on the replication timing of a
group of genes that are expressed mono-

allelically in a random manner (genes that
are expressed from either the paternal or
maternal chromosome, with variation
from cell to cell). Such genes are repre-
sented in several gene families, including
odorant receptors and T-cell receptors.
Whereas most genes are replicated syn-
chronously, monoallelically expressed
genes are asynchronously replicated in S
phase. As these genes are scattered
throughout the genome, Singh and col-

leagues asked whether the observed asyn-
chronous replication was coordinated in
any way.

The answer is found in this picture and
in others like it. In this particular mouse
embryonic fibroblast, the red dot corre-
sponds to the odorant-receptor gene Olfr1
and the green dot to the odorant-receptor
gene Olfr10, which are 14 cM apart on
chromosome 11. The linked double-dot
signals on the left indicate that the early-
replicating allele for each gene is on the
same chromosome. Notably, this coordi-
nation holds true for several monoalleli-
cally expressed loci on chromosomes 2, 6
and 7 as well, and is not limited to odor-
ant-receptor genes.

That these loci are distant from each
other along a chromosome, with many
intervening genes that replicate synchro-
nously, suggests some kind of ‘spooky
action at a distance,’ to borrow a phrase
from quantum mechanics. Although the
coordinated replication of these scattered
alleles is in some ways more perplexing
than whole-chromosome X inactivation,
the authors suggest that similar mecha-
nisms may be involved. —Alan Packer
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fibrosis syndrome termed bronchopul-
monary dysplasia in human premature
infants11. That perinatal antagonism of
excess TGF-β can rescue the alveolar
hypoplasia in fibrillin-1 deficiency but-
tresses the argument that therapeutic
approaches to maintaining correct levels
of TGF-β activity could perhaps prevent
alveolar hypoplasia.

Matrix matters
The loss of microfibrils as a result of
defective fibrillin-1 markedly changes
the targeting and sequestration of latent
TGF-β. This leads to the pronounced
TGF-β activation that triggers the
developmental inhibition of alveolar-
ization that presents eventually as
emphysema. Notably, abrogation of
LTBP-4 (which specifically binds TGF-
β1) also leads to profound defects in the
elastin fiber structure and pulmonary
emphysema12. Sterner-Kock et al.12

speculated, however, that the emphy-
sema resulted from reduced deposition
of TGF-β in the extracellular space in

the lung parenchyma. In sum, these
findings point to the key role of binding
proteins in control of the activity of
TGF-βs as well as in mediating precise
local concentration of the cytokine.

During cardiac development, TGF-β
signaling induces endocardial transfor-
mation that is required for proper forma-
tion of the endocardial atrioventricular
cushions and subsequently atrioventricu-
lar valves13. In Marfan syndrome, atrio-
ventricular valves frequently have
pathologic (myxomatous) changes associ-
ated with abnormal reorganization and
production of extracellular matrix pro-
teins, collagen and proteoglycans14. As
TGF-βs are well known inducers of extra-
cellular matrix deposition, it is tempting
to speculate, as suggested by Neptune et
al.5, that there is a causal relationship
between the aberrant activation of TGF-β
by dysfunctional fibrillin-1 and myxoma-
tous valve changes in Marfan syndrome.

The precise mechanism by which fib-
rillin-1 controls TGF-β activation is still
unknown. It has been previously shown

that fibrillin-1 interacts with LTBP-1
(and LTBP-4) in a tissue-specific
fashion15. Future studies are needed to
show whether the fibrillin–LTBP inter-
action is needed to protect the LLC from
proteolytic activation or whether fib-
rillin-1 functions more directly in con-
trolling assembly or stability of latent
TGF-β complexes. �
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